3.4 KiB
3.4 KiB
description: List of activation functions in Neataptic authors: Thomas Wagenaar keywords: activation function, squash, logistic sigmoid, neuron
Activation functions determine what activation value neurons should get. Depending on your network's environment, choosing a suitable activation function can have a positive impact on the learning ability of the network.
Methods
Name | Graph | Equation | Derivative |
---|---|---|---|
LOGISTIC | f(x) = \frac{1}{1+e^{-x}} |
f'(x) = f(x)(1 - f(x)) |
|
TANH | f(x) = tanh(x) = \frac{2}{1+e^{-2x}} - 1 |
f'(x) = 1 - f(x)^2 |
|
RELU | f(x) = \begin{cases} 0 & \text{if} & x \lt 0 \\\ x & \text{if} & x \ge 0 \end{cases} |
f'(x) = \begin{cases} 0 & \text{if} & x \lt 0 \\\ 1 & \text{if} & x \ge 0 \end{cases} |
|
IDENTITY | f(x) = x |
f'(x) = 1 |
|
STEP | f(x) = \begin{cases} 0 & \text{if} & x \lt 0 \\\ 1 & \text{if} & x \ge 0 \end{cases} |
f'(x) = \begin{cases} 0 & \text{if} & x \neq 0 \\\ ? & \text{if} & x = 0 \end{cases} |
|
SOFTSIGN | f(x) = \frac{x}{1+\left\lvert x \right\rvert} |
f'(x) = \frac{x}{{(1+\left\lvert x \right\rvert)}^2} |
|
SINUSOID | f(x) = sin(x) |
f'(x) = cos(x) |
|
GAUSSIAN | f(x) = e^{-x^2} |
f'(x) = -2xe^{-x^2} |
|
BENT_IDENTITY | f(x) = \frac{\sqrt{x^2+1} - 1}{2} + x |
f'(x) = \frac{ x }{2\sqrt{x^2+1}} + 1 |
|
BIPOLAR | f(x) = \begin{cases} -1 & \text{if} & x \le 0 \\\ 1 & \text{if} & x \gt 0 \end{cases} |
f'(x) = 0 |
|
BIPOLAR_SIGMOID | f(x) = \frac{2}{1+e^{-x}} - 1 |
f'(x) = \frac{(1 + f(x))(1 - f(x))}{2} |
|
HARD_TANH | f(x) = \text{max}(-1, \text{min}(1, x)) |
f'(x) = \begin{cases} 1 & \text{if} & x \gt -1 & \text{and} & x \lt 1 \\\ 0 & \text{if} & x \le -1 & \text{or} & x \ge 1 \end{cases} |
|
ABSOLUTE1 | f(x) = \left\lvert x \right\rvert |
f'(x) = \begin{cases} -1 & \text{if} & x \lt 0 \\\ 1 & \text{if} & x \ge 0 \end{cases} |
|
SELU | f(x) = \lambda \begin{cases} x & \text{if} & x \gt 0 \\\ \alpha e^x - \alpha & \text{if} & x \le 0 \end{cases} |
f'(x) = \begin{cases} \lambda & \text{if} & x \gt 0 \\\ \alpha e^x & \text{if} & x \le 0 \end{cases} |
|
INVERSE | f(x) = 1 - x |
f'(x) = -1 |
1 avoid using this activation function on a node with a selfconnection
Usage
By default, a neuron uses a Logistic Sigmoid as its squashing/activation function. You can change that property the following way:
var A = new Node();
A.squash = methods.activation.<ACTIVATION_FUNCTION>;
// eg.
A.squash = methods.activation.SINUSOID;