description: List of activation functions in Neataptic authors: Thomas Wagenaar keywords: activation function, squash, logistic sigmoid, neuron Activation functions determine what activation value neurons should get. Depending on your network's environment, choosing a suitable activation function can have a positive impact on the learning ability of the network. ### Methods Name | Graph | Equation | Derivative ---- | ----- | -------- | ---------- LOGISTIC | | $ f(x) = \frac{1}{1+e^{-x}} $ | $ f'(x) = f(x)(1 - f(x)) $ TANH | | $ f(x) = tanh(x) = \frac{2}{1+e^{-2x}} - 1 $ | $ f'(x) = 1 - f(x)^2 $ RELU | | $ f(x) = \begin{cases} 0 & \text{if} & x \lt 0 \\\ x & \text{if} & x \ge 0 \end{cases} $ | $ f'(x) = \begin{cases} 0 & \text{if} & x \lt 0 \\\ 1 & \text{if} & x \ge 0 \end{cases} $ IDENTITY | | $ f(x) = x $ | $ f'(x) = 1 $ STEP | |$ f(x) = \begin{cases} 0 & \text{if} & x \lt 0 \\\ 1 & \text{if} & x \ge 0 \end{cases} $| $ f'(x) = \begin{cases} 0 & \text{if} & x \neq 0 \\\ ? & \text{if} & x = 0 \end{cases} $ SOFTSIGN | | $ f(x) = \frac{x}{1+\left\lvert x \right\rvert} $ | $ f'(x) = \frac{x}{{(1+\left\lvert x \right\rvert)}^2} $ SINUSOID | | $ f(x) = sin(x) $ | $ f'(x) = cos(x) $ GAUSSIAN | | $ f(x) = e^{-x^2} $ | $ f'(x) = -2xe^{-x^2} $ BENT_IDENTITY | | $ f(x) = \frac{\sqrt{x^2+1} - 1}{2} + x$ | $ f'(x) = \frac{ x }{2\sqrt{x^2+1}} + 1 $ BIPOLAR | | $ f(x) = \begin{cases} -1 & \text{if} & x \le 0 \\\ 1 & \text{if} & x \gt 0 \end{cases} $ | $ f'(x) = 0 $ BIPOLAR_SIGMOID | | $ f(x) = \frac{2}{1+e^{-x}} - 1$ | $f'(x) = \frac{(1 + f(x))(1 - f(x))}{2} $ HARD_TANH | | $ f(x) = \text{max}(-1, \text{min}(1, x)) $ | $ f'(x) = \begin{cases} 1 & \text{if} & x \gt -1 & \text{and} & x \lt 1 \\\ 0 & \text{if} & x \le -1 & \text{or} & x \ge 1 \end{cases} $ ABSOLUTE1 | | $ f(x) = \left\lvert x \right\rvert $ | $ f'(x) = \begin{cases} -1 & \text{if} & x \lt 0 \\\ 1 & \text{if} & x \ge 0 \end{cases} $ SELU | | $ f(x) = \lambda \begin{cases} x & \text{if} & x \gt 0 \\\ \alpha e^x - \alpha & \text{if} & x \le 0 \end{cases} $ | $ f'(x) = \begin{cases} \lambda & \text{if} & x \gt 0 \\\ \alpha e^x & \text{if} & x \le 0 \end{cases} $ INVERSE | | $ f(x) = 1 - x $ | $ f'(x) = -1 $ 1 avoid using this activation function on a node with a selfconnection ### Usage By default, a neuron uses a [Logistic Sigmoid](http://en.wikipedia.org/wiki/Logistic_function) as its squashing/activation function. You can change that property the following way: ```javascript var A = new Node(); A.squash = methods.activation.; // eg. A.squash = methods.activation.SINUSOID; ```