357 lines
12 KiB
Python
357 lines
12 KiB
Python
import time
|
||
import requests
|
||
import argparse
|
||
import os
|
||
import cv2
|
||
import torch
|
||
import numpy as np
|
||
from omegaconf import OmegaConf
|
||
from PIL import Image
|
||
from tqdm import tqdm, trange
|
||
from itertools import islice
|
||
from einops import rearrange
|
||
from torchvision.utils import make_grid
|
||
from pytorch_lightning import seed_everything
|
||
from torch import autocast
|
||
from contextlib import nullcontext
|
||
from imwatermark import WatermarkEncoder
|
||
|
||
from ldm.util import instantiate_from_config
|
||
from ldm.models.diffusion.ddim import DDIMSampler
|
||
from ldm.models.diffusion.plms import PLMSSampler
|
||
from ldm.models.diffusion.dpm_solver import DPMSolverSampler
|
||
|
||
torch.set_grad_enabled(False)
|
||
|
||
|
||
def chunk(it, size):
|
||
it = iter(it)
|
||
return iter(lambda: tuple(islice(it, size)), ())
|
||
|
||
|
||
def load_model_from_config(config, ckpt, device=torch.device("cuda"), verbose=False):
|
||
print(f"Loading model from {ckpt}")
|
||
pl_sd = torch.load(ckpt, map_location="cpu")
|
||
if "global_step" in pl_sd:
|
||
print(f"Global Step: {pl_sd['global_step']}")
|
||
sd = pl_sd["state_dict"]
|
||
model = instantiate_from_config(config.model)
|
||
m, u = model.load_state_dict(sd, strict=False)
|
||
if len(m) > 0 and verbose:
|
||
print("missing keys:")
|
||
print(m)
|
||
if len(u) > 0 and verbose:
|
||
print("unexpected keys:")
|
||
print(u)
|
||
|
||
if device == torch.device("cuda"):
|
||
model.cuda()
|
||
elif device == torch.device("cpu"):
|
||
model.cpu()
|
||
model.cond_stage_model.device = "cpu"
|
||
else:
|
||
raise ValueError(f"Incorrect device name. Received: {device}")
|
||
model.eval()
|
||
return model
|
||
|
||
|
||
def parse_args():
|
||
parser = argparse.ArgumentParser()
|
||
parser.add_argument(
|
||
"--prompt",
|
||
type=str,
|
||
nargs="?",
|
||
default="a professional photograph of an astronaut riding a triceratops",
|
||
help="the prompt to render"
|
||
)
|
||
parser.add_argument(
|
||
"--outdir",
|
||
type=str,
|
||
nargs="?",
|
||
help="dir to write results to",
|
||
default="outputs/txt2img-samples"
|
||
)
|
||
parser.add_argument(
|
||
"--steps",
|
||
type=int,
|
||
default=50,
|
||
help="number of ddim sampling steps",
|
||
)
|
||
parser.add_argument(
|
||
"--plms",
|
||
action='store_true',
|
||
help="use plms sampling",
|
||
)
|
||
parser.add_argument(
|
||
"--dpm",
|
||
action='store_true',
|
||
help="use DPM (2) sampler",
|
||
)
|
||
parser.add_argument(
|
||
"--fixed_code",
|
||
action='store_true',
|
||
help="if enabled, uses the same starting code across all samples ",
|
||
)
|
||
parser.add_argument(
|
||
"--ddim_eta",
|
||
type=float,
|
||
default=0.0,
|
||
help="ddim eta (eta=0.0 corresponds to deterministic sampling",
|
||
)
|
||
parser.add_argument(
|
||
"--n_iter",
|
||
type=int,
|
||
default=3,
|
||
help="sample this often",
|
||
)
|
||
parser.add_argument(
|
||
"--H",
|
||
type=int,
|
||
default=512,
|
||
help="image height, in pixel space",
|
||
)
|
||
parser.add_argument(
|
||
"--W",
|
||
type=int,
|
||
default=512,
|
||
help="image width, in pixel space",
|
||
)
|
||
parser.add_argument(
|
||
"--C",
|
||
type=int,
|
||
default=4,
|
||
help="latent channels",
|
||
)
|
||
parser.add_argument(
|
||
"--f",
|
||
type=int,
|
||
default=8,
|
||
help="downsampling factor, most often 8 or 16",
|
||
)
|
||
parser.add_argument(
|
||
"--n_samples",
|
||
type=int,
|
||
default=3,
|
||
help="how many samples to produce for each given prompt. A.k.a batch size",
|
||
)
|
||
parser.add_argument(
|
||
"--n_rows",
|
||
type=int,
|
||
default=0,
|
||
help="rows in the grid (default: n_samples)",
|
||
)
|
||
parser.add_argument(
|
||
"--scale",
|
||
type=float,
|
||
default=9.0,
|
||
help="unconditional guidance scale: eps = eps(x, empty) + scale * (eps(x, cond) - eps(x, empty))",
|
||
)
|
||
parser.add_argument(
|
||
"--from-file",
|
||
type=str,
|
||
help="if specified, load prompts from this file, separated by newlines",
|
||
)
|
||
parser.add_argument(
|
||
"--config",
|
||
type=str,
|
||
default="configs/stable-diffusion/v2-inference.yaml",
|
||
help="path to config which constructs model",
|
||
)
|
||
parser.add_argument(
|
||
"--ckpt",
|
||
type=str,
|
||
help="path to checkpoint of model",
|
||
)
|
||
parser.add_argument(
|
||
"--seed",
|
||
type=int,
|
||
default=42,
|
||
help="the seed (for reproducible sampling)",
|
||
)
|
||
parser.add_argument(
|
||
"--precision",
|
||
type=str,
|
||
help="evaluate at this precision",
|
||
choices=["full", "autocast"],
|
||
default="autocast"
|
||
)
|
||
parser.add_argument(
|
||
"--repeat",
|
||
type=int,
|
||
default=1,
|
||
help="repeat each prompt in file this often",
|
||
)
|
||
parser.add_argument(
|
||
"--device",
|
||
type=str,
|
||
help="Device on which Stable Diffusion will be run",
|
||
choices=["cpu", "cuda"],
|
||
default="cpu"
|
||
)
|
||
parser.add_argument(
|
||
"--torchscript",
|
||
action='store_true',
|
||
help="Use TorchScript",
|
||
)
|
||
parser.add_argument(
|
||
"--ipex",
|
||
action='store_true',
|
||
help="Use Intel® Extension for PyTorch*",
|
||
)
|
||
parser.add_argument(
|
||
"--bf16",
|
||
action='store_true',
|
||
help="Use bfloat16",
|
||
)
|
||
opt = parser.parse_args()
|
||
return opt
|
||
|
||
|
||
def put_watermark(img, wm_encoder=None):
|
||
if wm_encoder is not None:
|
||
img = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
|
||
img = wm_encoder.encode(img, 'dwtDct')
|
||
img = Image.fromarray(img[:, :, ::-1])
|
||
return img
|
||
|
||
|
||
# 对任务状态的修改
|
||
def update_task_status(task: dict, status: str, progress: int, data: list = []):
|
||
task["status"] = status
|
||
task["progress"] = progress
|
||
task["data"] = data
|
||
requests.put(f"http://localhost:3000/api/drawing/{task['id']}", json=task)
|
||
|
||
# 从局域网中获取一组任务(如果列表为空,等待2s后重新获取)
|
||
def get_tasks(tasks:list=[]):
|
||
while len(tasks) == 0:
|
||
try:
|
||
tasks = requests.get("http://localhost:3000/api/drawing?status=waiting").json()
|
||
if len(tasks) == 0: time.sleep(2)
|
||
except:
|
||
# 打印当前时间
|
||
print("get tasks error", time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()))
|
||
time.sleep(2)
|
||
return tasks
|
||
|
||
def main_dev(opt):
|
||
model_name = '' # 默认模型
|
||
model = None # 默认模型
|
||
config = None # 默认配置
|
||
device = None # 默认设备
|
||
while True:
|
||
for task in get_tasks(): # 遍历 tasks 返回 dict
|
||
print('task:', task) # 打印任务
|
||
|
||
# 如果模型不同,重新加载模型(注意释放内存)
|
||
if task['ckpt'] != model_name:
|
||
# 修改状态为加载模型
|
||
update_task_status(task, "init", 0)
|
||
# 获取环境配置
|
||
model_name = task['ckpt']
|
||
opt.config = f'/data/{model_name}.yaml'
|
||
opt.ckpt = f'/data/{model_name}.ckpt'
|
||
opt.device = 'cuda'
|
||
print(f"config: {opt.config}", f"ckpt: {opt.ckpt}", f"device: {opt.device}")
|
||
config = OmegaConf.load(f"{opt.config}")
|
||
device = torch.device("cuda") if opt.device == "cuda" else torch.device("cpu")
|
||
# 加载模型(到显存)
|
||
print(f"加载模型到显存: {model_name}..")
|
||
model = load_model_from_config(config, f"{opt.ckpt}", device)
|
||
print(f"加载到显存完成: {model_name}")
|
||
|
||
# 更新任务状态为运行中
|
||
update_task_status(task, "running", 0)
|
||
|
||
# 使用指定的模型和配置文件进行推理一组参数
|
||
if opt.plms:
|
||
sampler = PLMSSampler(model, device=device)
|
||
elif opt.dpm:
|
||
sampler = DPMSolverSampler(model, device=device)
|
||
else:
|
||
sampler = DDIMSampler(model, device=device)
|
||
|
||
# 检查输出目录是否存在
|
||
os.makedirs(opt.outdir, exist_ok=True)
|
||
outpath = opt.outdir
|
||
|
||
# 创建水印编码器
|
||
wm = "SDV2"
|
||
wm_encoder = WatermarkEncoder()
|
||
wm_encoder.set_watermark('bytes', wm.encode('utf-8'))
|
||
|
||
# x
|
||
batch_size = task['number']
|
||
|
||
if not opt.from_file:
|
||
prompt = task['prompt']
|
||
assert prompt is not None
|
||
data = [batch_size * [prompt]]
|
||
print("data:", data)
|
||
else:
|
||
print(f"reading prompts from {opt.from_file}")
|
||
with open(opt.from_file, "r") as f:
|
||
data = f.read().splitlines()
|
||
data = [p for p in data for i in range(opt.repeat)]
|
||
data = list(chunk(data, batch_size))
|
||
print("data:", data)
|
||
# x
|
||
sample_path = os.path.join(outpath, "samples")
|
||
os.makedirs(sample_path, exist_ok=True)
|
||
sample_count = 0
|
||
base_count = len(os.listdir(sample_path))
|
||
|
||
# x
|
||
start_code = None
|
||
if opt.fixed_code:
|
||
start_code = torch.randn([task['number'], opt.C, opt.H // opt.f, opt.W // opt.f], device=device)
|
||
|
||
# 更新进度
|
||
update_task_status(task, "running", 0.1)
|
||
|
||
# 生成图片
|
||
precision_scope = autocast if opt.precision == "autocast" or opt.bf16 else nullcontext
|
||
with torch.no_grad(), precision_scope(opt.device), model.ema_scope():
|
||
images = []
|
||
# 执行指定的任务批次 (row)(task['number'])
|
||
for n in trange(1, desc="Sampling"):
|
||
for prompts in tqdm(data, desc="data"):
|
||
uc = None
|
||
if opt.scale != 1.0:
|
||
uc = model.get_learned_conditioning(batch_size * [""])
|
||
if isinstance(prompts, tuple):
|
||
prompts = list(prompts)
|
||
c = model.get_learned_conditioning(prompts)
|
||
shape = [opt.C, opt.H // opt.f, opt.W // opt.f]
|
||
update_task_status(task=task, status='diffusing', progress=0.5) # 修改任务状态
|
||
samples, _ = sampler.sample(S=opt.steps,
|
||
conditioning=c,
|
||
batch_size=task['number'],
|
||
shape=shape,
|
||
verbose=False,
|
||
unconditional_guidance_scale=opt.scale,
|
||
unconditional_conditioning=uc,
|
||
eta=opt.ddim_eta,
|
||
x_T=start_code)
|
||
update_task_status(task=task, status='build', progress=0.8) # 修改任务状态
|
||
x_samples = model.decode_first_stage(samples)
|
||
x_samples = torch.clamp((x_samples + 1.0) / 2.0, min=0.0, max=1.0)
|
||
for x_sample in x_samples:
|
||
imge_path = os.path.join(sample_path, f"{base_count:05}.png")
|
||
imge_path = os.path.abspath(imge_path) # 转换为绝对路径
|
||
x_sample = 255. * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c')
|
||
img = Image.fromarray(x_sample.astype(np.uint8))
|
||
img = put_watermark(img, wm_encoder)
|
||
img.save(imge_path)
|
||
base_count += 1
|
||
sample_count += 1
|
||
images.append(imge_path)
|
||
update_task_status(task=task, status='done', progress=1, data=images) # 修改任务状态为完成
|
||
print("批次任务结束..")
|
||
#break
|
||
|
||
|
||
if __name__ == "__main__":
|
||
opt = parse_args()
|
||
main_dev(opt)
|