处理后端接口

This commit is contained in:
2023-02-10 02:02:25 +08:00
parent fabccbaf7d
commit d0e7db4bce
4 changed files with 503 additions and 25 deletions

View File

@@ -1,3 +1,33 @@
# server
基于 VUE/NUXT 构建的AI绘图前端 DEMO
对内网开放读写接口, 以便多台服务器协作调度, 由于NUXT默认是多线程的, 因此需要构建一个公共队列
```JSON
[
{
"MODEL": "model-768",
"UID": "XXXXXXXXXXX",
"STATUS": "awaiting|produce|end",
}
]
```
```BASH
python scripts/txt2img.py --prompt "a little girl professional photograph of an astronaut riding a horse" --ckpt /data/768-v-ema.ckpt --config /data/768-v-ema.yaml --H 768 --W 768 --device cuda --bf16 --n_samples 1 --n_rows 1
stderr: Running command git clone --filter=blob:none --quiet https://github.com/TencentARC/GFPGAN.git /tmp/pip-req-build-1oercg75
Running command git rev-parse -q --verify 'sha^8d2447a2d918f8eba5a4a01463fd48e45126a379'
Running command git fetch -q https://github.com/TencentARC/GFPGAN.git 8d2447a2d918f8eba5a4a01463fd48e45126a379
Running command git checkout -q 8d2447a2d918f8eba5a4a01463fd48e45126a379
ERROR: Exception:
Traceback (most recent call last):
File "/data/stable-diffusion-webui/venv/lib/python3.10/site-packages/pip/_vendor/urllib3/response.py", line 438, in _error_catcher
yield
```
# Nuxt 3 Minimal Starter # Nuxt 3 Minimal Starter
Look at the [Nuxt 3 documentation](https://nuxt.com/docs/getting-started/introduction) to learn more. Look at the [Nuxt 3 documentation](https://nuxt.com/docs/getting-started/introduction) to learn more.

View File

@@ -1,17 +1,29 @@
<template lang="pug"> <template lang="pug">
div(class="mt-[60px] grid grid-cols-1 lg:grid-cols-4 xl:grid-cols-5 text-white bg-[#05020E] h-[calc(100vh-62px)] border-t border-white/10 2xl:border-t-0 mx-auto 2xl:border-x") div(class="mt-[60px] grid grid-cols-1 lg:grid-cols-4 xl:grid-cols-5 text-white bg-[#05020E] h-[calc(100vh-62px)] border-t border-white/10 2xl:border-t-0 mx-auto 2xl:border-x")
// 左侧信息 // 左侧信息
aside(class="flex flex-col divide-y divide-white/10 pt-6 space-y-6 lg:overflow-y-auto scrollbar-hide") aside.p-4(class="flex flex-col divide-y divide-white/10 pt-6 space-y-6 lg:overflow-y-auto scrollbar-hide")
div div
p.font-bold 迅速に開発できる p.font-bold Filter
p.text-gray-400 尝试可以应用于您的图像的不同风格样式
div.flex.flex-wrap.items-center.justify-between.pt-2
div(v-for="item in models.filter(x=>x.use)" class="w-5/16 h-20 bg-gray-500 rounded-lg flex flex-col-reverse")
p.p-1 {{item.name}}
div
p.font-bold Prompt
p.text-gray-400 あなたのアイデアを素早く実現するためのフレームワークです p.text-gray-400 あなたのアイデアを素早く実現するためのフレームワークです
textarea.mt-4.rounded-lg.h-32.w-full.px-4.py-2.bg-gray-500.bg-opacity-5.border.border-gray-500.border-opacity-20.text-gray-500(value="Search" type="text" class="focus:outline-none") textarea.mt-4.rounded-lg.h-32.w-full.px-4.py-2.bg-gray-500.bg-opacity-5.border.border-gray-500.border-opacity-20.text-gray-500(
v-model="imageCreate.prompt" type="text" class="focus:outline-none"
)
div div
div.flex.items-center.justify-between div.flex.items-center.justify-between
span.font-bold 从图像中删除特征 span.font-bold 从图像中删除特征
label.switch label.switch
input(type="checkbox" checked) input(type="checkbox" :checked="imageCreate.exclude_on" @change="imageCreate.exclude_on=!imageCreate.exclude_on")
div.slider.round div.slider.round
div(v-show="imageCreate.exclude_on")
textarea.mt-4.rounded-lg.h-32.w-full.px-4.py-2.bg-gray-500.bg-opacity-5.border.border-gray-500.border-opacity-20.text-gray-400(
v-model="imageCreate.exclude" type="text" class="focus:outline-none"
)
p.text-gray-400 描述您不希望出现在图像中的细节, 例如颜色, 物体或是风景 p.text-gray-400 描述您不希望出现在图像中的细节, 例如颜色, 物体或是风景
div div
p.font-bold 筛选 p.font-bold 筛选
@@ -29,12 +41,13 @@ div(class="mt-[60px] grid grid-cols-1 lg:grid-cols-4 xl:grid-cols-5 text-white b
span(class="absolute left-2 top-2.5 text-gray-500") span(class="absolute left-2 top-2.5 text-gray-500")
<svg fill="none" height="20" shape-rendering="geometricPrecision" stroke="currentColor" stroke-linecap="round" stroke-linejoin="round" stroke-width="1.5" viewBox="0 0 24 24" width="20"><path d="M11 17.25a6.25 6.25 0 110-12.5 6.25 6.25 0 010 12.5z"></path><path d="M16 16l4.5 4.5"></path></svg> <svg fill="none" height="20" shape-rendering="geometricPrecision" stroke="currentColor" stroke-linecap="round" stroke-linejoin="round" stroke-width="1.5" viewBox="0 0 24 24" width="20"><path d="M11 17.25a6.25 6.25 0 110-12.5 6.25 6.25 0 010 12.5z"></path><path d="M16 16l4.5 4.5"></path></svg>
div(class="h-32 lg:h-28") div(class="h-32 lg:h-28")
// 风格滤镜列表(弹出/悬浮)
div(class="grid grid-cols-3 sm:grid-cols-4 lg:grid-cols-3 gap-2 p-2 pt-0") div(class="grid grid-cols-3 sm:grid-cols-4 lg:grid-cols-3 gap-2 p-2 pt-0")
template(v-for="item in 18" :key="item") template(v-for="item in models" :key="item.name")
button.h-24(class="transition-[transform,opacity] origin-center filter-button relative aspect-[6/5] duration-200 border-2 rounded-lg overflow-hidden active:border-blue-300/50 border-transparent hover:border-high" aria-label="Select filter style: Colorpop" style="transition-delay: 10ms;") button.h-24(class="transition-[transform,opacity] origin-center filter-button relative aspect-[6/5] duration-200 border-2 rounded-lg overflow-hidden active:border-blue-300/50 border-transparent hover:border-high" aria-label="Select filter style: Colorpop" style="transition-delay: 10ms;")
span( style="box-sizing: border-box; display: block; overflow: hidden; width: initial; height: initial; background: none; opacity: 1; border: 0px; margin: 0px; padding: 0px; position: absolute; inset: 0px;") span( style="box-sizing: border-box; display: block; overflow: hidden; width: initial; height: initial; background: none; opacity: 1; border: 0px; margin: 0px; padding: 0px; position: absolute; inset: 0px;")
img( alt="Colorpop" src="https://storage.googleapis.com/pai-marketing/filters/elizaport_style.png" decoding="async" data-nimg="fill" style="position: absolute; inset: 0px; box-sizing: border-box; padding: 0px; border: none; margin: auto; display: block; width: 0px; height: 0px; min-width: 100%; max-width: 100%; min-height: 100%; max-height: 100%; object-fit: cover;" sizes="100vw" srcset="https://storage.googleapis.com/pai-marketing/filters/elizaport_style.png 640w, https://storage.googleapis.com/pai-marketing/filters/elizaport_style.png 750w, https://storage.googleapis.com/pai-marketing/filters/elizaport_style.png 828w, https://storage.googleapis.com/pai-marketing/filters/elizaport_style.png 1080w, https://storage.googleapis.com/pai-marketing/filters/elizaport_style.png 1200w, https://storage.googleapis.com/pai-marketing/filters/elizaport_style.png 1920w, https://storage.googleapis.com/pai-marketing/filters/elizaport_style.png 2048w, https://storage.googleapis.com/pai-marketing/filters/elizaport_style.png 3840w") img( alt="Colorpop" :src="item.image" decoding="async" data-nimg="fill" style="position: absolute; inset: 0px; box-sizing: border-box; padding: 0px; border: none; margin: auto; display: block; width: 0px; height: 0px; min-width: 100%; max-width: 100%; min-height: 100%; max-height: 100%; object-fit: cover;" sizes="100vw" srcset="https://storage.googleapis.com/pai-marketing/filters/elizaport_style.png 640w, https://storage.googleapis.com/pai-marketing/filters/elizaport_style.png 750w, https://storage.googleapis.com/pai-marketing/filters/elizaport_style.png 828w, https://storage.googleapis.com/pai-marketing/filters/elizaport_style.png 1080w, https://storage.googleapis.com/pai-marketing/filters/elizaport_style.png 1200w, https://storage.googleapis.com/pai-marketing/filters/elizaport_style.png 1920w, https://storage.googleapis.com/pai-marketing/filters/elizaport_style.png 2048w, https://storage.googleapis.com/pai-marketing/filters/elizaport_style.png 3840w")
div( class="absolute inset-0 bg-gradient-to-t from-black/90 via-black/40 flex flex-col justify-end text-gray-100 text-left text-sm p-1") Colorpop div( class="absolute inset-0 bg-gradient-to-t from-black/90 via-black/40 flex flex-col justify-end text-gray-100 text-left text-sm p-1") {{ item.name }}
div div
p.font-bold 通过图像生成图像 p.font-bold 通过图像生成图像
p.text-gray-400 上传或绘制图像以用作灵感 p.text-gray-400 上传或绘制图像以用作灵感
@@ -79,28 +92,14 @@ div(class="mt-[60px] grid grid-cols-1 lg:grid-cols-4 xl:grid-cols-5 text-white b
</div> </div>
</fieldset> </fieldset>
div(class="flex flex-col gap-y-8 py-8") div(class="flex flex-col gap-y-8 py-8")
// 选择生成尺寸
fieldset(class="create-fieldset") fieldset(class="create-fieldset")
label 图像尺寸 label 图像尺寸
p 完成图像的宽度×高度. p 完成图像的宽度×高度.
div(class="flex flex-row flex-wrap gap-x-2 gap-y-2") div(class="flex flex-row flex-wrap gap-x-2 gap-y-2")
div(class="flex flex-row flex-wrap") div(class="flex flex-row flex-wrap" v-for="item in sizes" :key="item.id")
input.hidden(type="radio" class="radio-input" id="image-dim-1" checked="") input.hidden.radio-input(type="radio" :id="item.id" checked="")
label.border.border-2.border-gray-500.rounded-md.px-4.py-1(for="image-dim-1" class="!text-[11px]" style="width:98px") 512 × 512 label.border.border-2.border-gray-500.rounded-md.px-4.py-1.whitespace-nowrap.text-center(:for="item.id" class="!text-[11px]" style="width:98px") {{ item.width }} x {{ item.height }}
div(class="flex flex-row flex-wrap")
input.hidden(type="radio" class="radio-input" id="image-dim-2")
label.border.border-2.border-gray-500.rounded-md.px-4.py-1(for="image-dim-2" class="!text-[11px]" style="width:98px") 1024 × 1024
div(class="flex flex-row flex-wrap")
input.hidden(type="radio" class="radio-input" id="image-dim-3")
label.border.border-2.border-gray-500.rounded-md.px-4.py-1(for="image-dim-3" class="!text-[11px]" style="width:98px") 640 × 384
div(class="flex flex-row flex-wrap")
input.hidden(type="radio" class="radio-input" id="image-dim-4")
label.border.border-2.border-gray-500.rounded-md.px-4.py-1(for="image-dim-4" class="!text-[11px]" style="width:98px") 384 × 640
div(class="flex flex-row flex-wrap")
input.hidden(type="radio" class="radio-input" id="image-dim-5")
label.border.border-2.border-gray-500.rounded-md.px-4.py-1(for="image-dim-5" class="!text-[11px]" style="width:98px") 768 × 512
div(class="flex flex-row flex-wrap")
input.hidden(type="radio" class="radio-input" id="image-dim-6")
label.border.border-2.border-gray-500.rounded-md.px-4.py-1(for="image-dim-6" class="!text-[11px]" style="width:98px") 512 × 768
div(class="text-sm grey-100 mt-1") div(class="text-sm grey-100 mt-1")
p Buy a <a target="_blank" style="color:rgb(118 173 255)" href="/pricing">paid plan</a> for any width or height up to 1536px p Buy a <a target="_blank" style="color:rgb(118 173 255)" href="/pricing">paid plan</a> for any width or height up to 1536px
fieldset(class="create-fieldset") fieldset(class="create-fieldset")
@@ -202,6 +201,9 @@ const views = ref({
}) })
const imageCreate = ref({ const imageCreate = ref({
prompt: '渲染提示', // 渲染提示
exclude: '排除', // 排除词汇
exclude_on: false, // 排除开关
// 输入: // 输入:
// 输入关键词 // 输入关键词
// 排除关键词 // 排除关键词
@@ -220,6 +222,35 @@ const imageCreate = ref({
// 私有会话 // 私有会话
}) })
const sizes = ref([
{ id:'image-dim-1', width:512, height:512 },
{ id:'image-dim-2', width:768, height:768 },
{ id:'image-dim-3', width:1024, height:1024 },
{ id:'image-dim-4', width:640, height:384 },
{ id:'image-dim-5', width:384, height:640 },
{ id:'image-dim-6', width:768, height:512 },
])
const models = ref([
{ name:'None', use: 1, image:'https://storage.googleapis.com/pai-marketing/filters/elizaport_style.png' },
{ name:'Colorpop1', use: 2, image:'https://storage.googleapis.com/pai-marketing/filters/elizaport_style.png' },
{ name:'Colorpop2', use: 3, image:'https://storage.googleapis.com/pai-marketing/filters/elizaport_style.png' },
{ name:'Colorpop3', use: 4, image:'https://storage.googleapis.com/pai-marketing/filters/elizaport_style.png' },
{ name:'Colorpop3', use: 5, image:'https://storage.googleapis.com/pai-marketing/filters/elizaport_style.png' },
{ name:'Colorpop3', use: 0, image:'https://storage.googleapis.com/pai-marketing/filters/elizaport_style.png' },
{ name:'Colorpop3', use: 0, image:'https://storage.googleapis.com/pai-marketing/filters/elizaport_style.png' },
{ name:'Colorpop3', use: 0, image:'https://storage.googleapis.com/pai-marketing/filters/elizaport_style.png' },
])
const tasks = ref([
// 以图生成图, 正面描述词, 反面描述词, 生成数量, 生成质量, 生成尺寸, 生成模型, 生成图片, 随机种子, 生成指导
{ tid:'sjaksjka0', model:'Colorpop0', image:'', width:768, height:768, number:1, seed:1, quality:1, prompt:'prompt0' },
{ tid:'sjaksjka1', model:'Colorpop1', image:'', width:768, height:768, number:1, seed:1, quality:1, prompt:'prompt1' },
{ tid:'sjaksjka2', model:'Colorpop2', image:'', width:768, height:768, number:1, seed:1, quality:1, prompt:'prompt2' },
{ tid:'sjaksjka3', model:'Colorpop3', image:'', width:768, height:768, number:1, seed:1, quality:1, prompt:'prompt3' },
])
</script> </script>
<style> <style>

388
server.py Normal file
View File

@@ -0,0 +1,388 @@
import argparse, os
import cv2
import torch
import numpy as np
from omegaconf import OmegaConf
from PIL import Image
from tqdm import tqdm, trange
from itertools import islice
from einops import rearrange
from torchvision.utils import make_grid
from pytorch_lightning import seed_everything
from torch import autocast
from contextlib import nullcontext
from imwatermark import WatermarkEncoder
from ldm.util import instantiate_from_config
from ldm.models.diffusion.ddim import DDIMSampler
from ldm.models.diffusion.plms import PLMSSampler
from ldm.models.diffusion.dpm_solver import DPMSolverSampler
torch.set_grad_enabled(False)
def chunk(it, size):
it = iter(it)
return iter(lambda: tuple(islice(it, size)), ())
def load_model_from_config(config, ckpt, device=torch.device("cuda"), verbose=False):
print(f"Loading model from {ckpt}")
pl_sd = torch.load(ckpt, map_location="cpu")
if "global_step" in pl_sd:
print(f"Global Step: {pl_sd['global_step']}")
sd = pl_sd["state_dict"]
model = instantiate_from_config(config.model)
m, u = model.load_state_dict(sd, strict=False)
if len(m) > 0 and verbose:
print("missing keys:")
print(m)
if len(u) > 0 and verbose:
print("unexpected keys:")
print(u)
if device == torch.device("cuda"):
model.cuda()
elif device == torch.device("cpu"):
model.cpu()
model.cond_stage_model.device = "cpu"
else:
raise ValueError(f"Incorrect device name. Received: {device}")
model.eval()
return model
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--prompt",
type=str,
nargs="?",
default="a professional photograph of an astronaut riding a triceratops",
help="the prompt to render"
)
parser.add_argument(
"--outdir",
type=str,
nargs="?",
help="dir to write results to",
default="outputs/txt2img-samples"
)
parser.add_argument(
"--steps",
type=int,
default=50,
help="number of ddim sampling steps",
)
parser.add_argument(
"--plms",
action='store_true',
help="use plms sampling",
)
parser.add_argument(
"--dpm",
action='store_true',
help="use DPM (2) sampler",
)
parser.add_argument(
"--fixed_code",
action='store_true',
help="if enabled, uses the same starting code across all samples ",
)
parser.add_argument(
"--ddim_eta",
type=float,
default=0.0,
help="ddim eta (eta=0.0 corresponds to deterministic sampling",
)
parser.add_argument(
"--n_iter",
type=int,
default=3,
help="sample this often",
)
parser.add_argument(
"--H",
type=int,
default=512,
help="image height, in pixel space",
)
parser.add_argument(
"--W",
type=int,
default=512,
help="image width, in pixel space",
)
parser.add_argument(
"--C",
type=int,
default=4,
help="latent channels",
)
parser.add_argument(
"--f",
type=int,
default=8,
help="downsampling factor, most often 8 or 16",
)
parser.add_argument(
"--n_samples",
type=int,
default=3,
help="how many samples to produce for each given prompt. A.k.a batch size",
)
parser.add_argument(
"--n_rows",
type=int,
default=0,
help="rows in the grid (default: n_samples)",
)
parser.add_argument(
"--scale",
type=float,
default=9.0,
help="unconditional guidance scale: eps = eps(x, empty) + scale * (eps(x, cond) - eps(x, empty))",
)
parser.add_argument(
"--from-file",
type=str,
help="if specified, load prompts from this file, separated by newlines",
)
parser.add_argument(
"--config",
type=str,
default="configs/stable-diffusion/v2-inference.yaml",
help="path to config which constructs model",
)
parser.add_argument(
"--ckpt",
type=str,
help="path to checkpoint of model",
)
parser.add_argument(
"--seed",
type=int,
default=42,
help="the seed (for reproducible sampling)",
)
parser.add_argument(
"--precision",
type=str,
help="evaluate at this precision",
choices=["full", "autocast"],
default="autocast"
)
parser.add_argument(
"--repeat",
type=int,
default=1,
help="repeat each prompt in file this often",
)
parser.add_argument(
"--device",
type=str,
help="Device on which Stable Diffusion will be run",
choices=["cpu", "cuda"],
default="cpu"
)
parser.add_argument(
"--torchscript",
action='store_true',
help="Use TorchScript",
)
parser.add_argument(
"--ipex",
action='store_true',
help="Use Intel® Extension for PyTorch*",
)
parser.add_argument(
"--bf16",
action='store_true',
help="Use bfloat16",
)
opt = parser.parse_args()
return opt
def put_watermark(img, wm_encoder=None):
if wm_encoder is not None:
img = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
img = wm_encoder.encode(img, 'dwtDct')
img = Image.fromarray(img[:, :, ::-1])
return img
def main(opt):
seed_everything(opt.seed)
config = OmegaConf.load(f"{opt.config}")
device = torch.device("cuda") if opt.device == "cuda" else torch.device("cpu")
model = load_model_from_config(config, f"{opt.ckpt}", device)
if opt.plms:
sampler = PLMSSampler(model, device=device)
elif opt.dpm:
sampler = DPMSolverSampler(model, device=device)
else:
sampler = DDIMSampler(model, device=device)
os.makedirs(opt.outdir, exist_ok=True)
outpath = opt.outdir
print("Creating invisible watermark encoder (see https://github.com/ShieldMnt/invisible-watermark)...")
wm = "SDV2"
wm_encoder = WatermarkEncoder()
wm_encoder.set_watermark('bytes', wm.encode('utf-8'))
batch_size = opt.n_samples
n_rows = opt.n_rows if opt.n_rows > 0 else batch_size
if not opt.from_file:
prompt = opt.prompt
assert prompt is not None
data = [batch_size * [prompt]]
else:
print(f"reading prompts from {opt.from_file}")
with open(opt.from_file, "r") as f:
data = f.read().splitlines()
data = [p for p in data for i in range(opt.repeat)]
data = list(chunk(data, batch_size))
sample_path = os.path.join(outpath, "samples")
os.makedirs(sample_path, exist_ok=True)
sample_count = 0
base_count = len(os.listdir(sample_path))
grid_count = len(os.listdir(outpath)) - 1
start_code = None
if opt.fixed_code:
start_code = torch.randn([opt.n_samples, opt.C, opt.H // opt.f, opt.W // opt.f], device=device)
if opt.torchscript or opt.ipex:
transformer = model.cond_stage_model.model
unet = model.model.diffusion_model
decoder = model.first_stage_model.decoder
additional_context = torch.cpu.amp.autocast() if opt.bf16 else nullcontext()
shape = [opt.C, opt.H // opt.f, opt.W // opt.f]
if opt.bf16 and not opt.torchscript and not opt.ipex:
raise ValueError('Bfloat16 is supported only for torchscript+ipex')
if opt.bf16 and unet.dtype != torch.bfloat16:
raise ValueError("Use configs/stable-diffusion/intel/ configs with bf16 enabled if " +
"you'd like to use bfloat16 with CPU.")
if unet.dtype == torch.float16 and device == torch.device("cpu"):
raise ValueError("Use configs/stable-diffusion/intel/ configs for your model if you'd like to run it on CPU.")
if opt.ipex:
import intel_extension_for_pytorch as ipex
bf16_dtype = torch.bfloat16 if opt.bf16 else None
transformer = transformer.to(memory_format=torch.channels_last)
transformer = ipex.optimize(transformer, level="O1", inplace=True)
unet = unet.to(memory_format=torch.channels_last)
unet = ipex.optimize(unet, level="O1", auto_kernel_selection=True, inplace=True, dtype=bf16_dtype)
decoder = decoder.to(memory_format=torch.channels_last)
decoder = ipex.optimize(decoder, level="O1", auto_kernel_selection=True, inplace=True, dtype=bf16_dtype)
if opt.torchscript:
with torch.no_grad(), additional_context:
# get UNET scripted
if unet.use_checkpoint:
raise ValueError("Gradient checkpoint won't work with tracing. " +
"Use configs/stable-diffusion/intel/ configs for your model or disable checkpoint in your config.")
img_in = torch.ones(2, 4, 96, 96, dtype=torch.float32)
t_in = torch.ones(2, dtype=torch.int64)
context = torch.ones(2, 77, 1024, dtype=torch.float32)
scripted_unet = torch.jit.trace(unet, (img_in, t_in, context))
scripted_unet = torch.jit.optimize_for_inference(scripted_unet)
print(type(scripted_unet))
model.model.scripted_diffusion_model = scripted_unet
# get Decoder for first stage model scripted
samples_ddim = torch.ones(1, 4, 96, 96, dtype=torch.float32)
scripted_decoder = torch.jit.trace(decoder, (samples_ddim))
scripted_decoder = torch.jit.optimize_for_inference(scripted_decoder)
print(type(scripted_decoder))
model.first_stage_model.decoder = scripted_decoder
prompts = data[0]
print("Running a forward pass to initialize optimizations")
uc = None
if opt.scale != 1.0:
uc = model.get_learned_conditioning(batch_size * [""])
if isinstance(prompts, tuple):
prompts = list(prompts)
with torch.no_grad(), additional_context:
for _ in range(3):
c = model.get_learned_conditioning(prompts)
samples_ddim, _ = sampler.sample(S=5,
conditioning=c,
batch_size=batch_size,
shape=shape,
verbose=False,
unconditional_guidance_scale=opt.scale,
unconditional_conditioning=uc,
eta=opt.ddim_eta,
x_T=start_code)
print("Running a forward pass for decoder")
for _ in range(3):
x_samples_ddim = model.decode_first_stage(samples_ddim)
precision_scope = autocast if opt.precision=="autocast" or opt.bf16 else nullcontext
with torch.no_grad(), \
precision_scope(opt.device), \
model.ema_scope():
all_samples = list()
for n in trange(opt.n_iter, desc="Sampling"):
for prompts in tqdm(data, desc="data"):
uc = None
if opt.scale != 1.0:
uc = model.get_learned_conditioning(batch_size * [""])
if isinstance(prompts, tuple):
prompts = list(prompts)
c = model.get_learned_conditioning(prompts)
shape = [opt.C, opt.H // opt.f, opt.W // opt.f]
samples, _ = sampler.sample(S=opt.steps,
conditioning=c,
batch_size=opt.n_samples,
shape=shape,
verbose=False,
unconditional_guidance_scale=opt.scale,
unconditional_conditioning=uc,
eta=opt.ddim_eta,
x_T=start_code)
x_samples = model.decode_first_stage(samples)
x_samples = torch.clamp((x_samples + 1.0) / 2.0, min=0.0, max=1.0)
for x_sample in x_samples:
x_sample = 255. * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c')
img = Image.fromarray(x_sample.astype(np.uint8))
img = put_watermark(img, wm_encoder)
img.save(os.path.join(sample_path, f"{base_count:05}.png"))
base_count += 1
sample_count += 1
all_samples.append(x_samples)
# additionally, save as grid
grid = torch.stack(all_samples, 0)
grid = rearrange(grid, 'n b c h w -> (n b) c h w')
grid = make_grid(grid, nrow=n_rows)
# to image
grid = 255. * rearrange(grid, 'c h w -> h w c').cpu().numpy()
grid = Image.fromarray(grid.astype(np.uint8))
grid = put_watermark(grid, wm_encoder)
grid.save(os.path.join(outpath, f'grid-{grid_count:04}.png'))
grid_count += 1
print(f"Your samples are ready and waiting for you here: \n{outpath} \n"
f" \nEnjoy.")
if __name__ == "__main__":
opt = parse_args()
main(opt)

29
server/api/drawing.ts Normal file
View File

@@ -0,0 +1,29 @@
export default defineEventHandler(async event => {
event.context.query = getQuery(event)
// 获取任务列表的状态进度(普通用户只能看到自己的)
if (event.node.req.method === 'GET') {
let tasks = await useStorage().getItem(`task:${event.context.query.tid}`)
return { 'tasks': tasks }
}
// 保存任务列表的状态进度(只允许BOT写入)
if (event.node.req.method === 'PUT') {
await useStorage().setItem(`task:${event.context.query.tid}`, event.context.query.tid)
return { 'message': 'ok' }
}
// 添加任务到队列(生成一个32位随机字符串作为任务ID)
if (event.node.req.method === 'POST') {
event.context.query.tid = Math.random().toString(36).substring(2, 34)
await useStorage().setItem(`task:${event.context.query.tid}`, event.context.query)
return { 'message': 'ok' }
}
// 逐删除自己的指定任务(普通用户只能删除自己的)
if (event.node.req.method === 'DELETE') {
await useStorage().removeItem(`task:${event.context.query.tid}`)
return { 'message': 'ok' }
}
})