处理后端接口
This commit is contained in:
30
README.md
30
README.md
@@ -1,3 +1,33 @@
|
||||
# server
|
||||
基于 VUE/NUXT 构建的AI绘图前端 DEMO
|
||||
|
||||
对内网开放读写接口, 以便多台服务器协作调度, 由于NUXT默认是多线程的, 因此需要构建一个公共队列
|
||||
```JSON
|
||||
[
|
||||
{
|
||||
"MODEL": "model-768",
|
||||
"UID": "XXXXXXXXXXX",
|
||||
"STATUS": "awaiting|produce|end",
|
||||
}
|
||||
]
|
||||
```
|
||||
|
||||
|
||||
|
||||
```BASH
|
||||
python scripts/txt2img.py --prompt "a little girl professional photograph of an astronaut riding a horse" --ckpt /data/768-v-ema.ckpt --config /data/768-v-ema.yaml --H 768 --W 768 --device cuda --bf16 --n_samples 1 --n_rows 1
|
||||
|
||||
|
||||
stderr: Running command git clone --filter=blob:none --quiet https://github.com/TencentARC/GFPGAN.git /tmp/pip-req-build-1oercg75
|
||||
Running command git rev-parse -q --verify 'sha^8d2447a2d918f8eba5a4a01463fd48e45126a379'
|
||||
Running command git fetch -q https://github.com/TencentARC/GFPGAN.git 8d2447a2d918f8eba5a4a01463fd48e45126a379
|
||||
Running command git checkout -q 8d2447a2d918f8eba5a4a01463fd48e45126a379
|
||||
ERROR: Exception:
|
||||
Traceback (most recent call last):
|
||||
File "/data/stable-diffusion-webui/venv/lib/python3.10/site-packages/pip/_vendor/urllib3/response.py", line 438, in _error_catcher
|
||||
yield
|
||||
```
|
||||
|
||||
# Nuxt 3 Minimal Starter
|
||||
|
||||
Look at the [Nuxt 3 documentation](https://nuxt.com/docs/getting-started/introduction) to learn more.
|
||||
|
@@ -1,17 +1,29 @@
|
||||
<template lang="pug">
|
||||
div(class="mt-[60px] grid grid-cols-1 lg:grid-cols-4 xl:grid-cols-5 text-white bg-[#05020E] h-[calc(100vh-62px)] border-t border-white/10 2xl:border-t-0 mx-auto 2xl:border-x")
|
||||
// 左侧信息
|
||||
aside(class="flex flex-col divide-y divide-white/10 pt-6 space-y-6 lg:overflow-y-auto scrollbar-hide")
|
||||
aside.p-4(class="flex flex-col divide-y divide-white/10 pt-6 space-y-6 lg:overflow-y-auto scrollbar-hide")
|
||||
div
|
||||
p.font-bold 迅速に開発できる
|
||||
p.font-bold Filter
|
||||
p.text-gray-400 尝试可以应用于您的图像的不同风格样式
|
||||
div.flex.flex-wrap.items-center.justify-between.pt-2
|
||||
div(v-for="item in models.filter(x=>x.use)" class="w-5/16 h-20 bg-gray-500 rounded-lg flex flex-col-reverse")
|
||||
p.p-1 {{item.name}}
|
||||
div
|
||||
p.font-bold Prompt
|
||||
p.text-gray-400 あなたのアイデアを素早く実現するためのフレームワークです。
|
||||
textarea.mt-4.rounded-lg.h-32.w-full.px-4.py-2.bg-gray-500.bg-opacity-5.border.border-gray-500.border-opacity-20.text-gray-500(value="Search" type="text" class="focus:outline-none")
|
||||
textarea.mt-4.rounded-lg.h-32.w-full.px-4.py-2.bg-gray-500.bg-opacity-5.border.border-gray-500.border-opacity-20.text-gray-500(
|
||||
v-model="imageCreate.prompt" type="text" class="focus:outline-none"
|
||||
)
|
||||
div
|
||||
div.flex.items-center.justify-between
|
||||
span.font-bold 从图像中删除特征
|
||||
label.switch
|
||||
input(type="checkbox" checked)
|
||||
input(type="checkbox" :checked="imageCreate.exclude_on" @change="imageCreate.exclude_on=!imageCreate.exclude_on")
|
||||
div.slider.round
|
||||
div(v-show="imageCreate.exclude_on")
|
||||
textarea.mt-4.rounded-lg.h-32.w-full.px-4.py-2.bg-gray-500.bg-opacity-5.border.border-gray-500.border-opacity-20.text-gray-400(
|
||||
v-model="imageCreate.exclude" type="text" class="focus:outline-none"
|
||||
)
|
||||
p.text-gray-400 描述您不希望出现在图像中的细节, 例如颜色, 物体或是风景
|
||||
div
|
||||
p.font-bold 筛选
|
||||
@@ -29,12 +41,13 @@ div(class="mt-[60px] grid grid-cols-1 lg:grid-cols-4 xl:grid-cols-5 text-white b
|
||||
span(class="absolute left-2 top-2.5 text-gray-500")
|
||||
<svg fill="none" height="20" shape-rendering="geometricPrecision" stroke="currentColor" stroke-linecap="round" stroke-linejoin="round" stroke-width="1.5" viewBox="0 0 24 24" width="20"><path d="M11 17.25a6.25 6.25 0 110-12.5 6.25 6.25 0 010 12.5z"></path><path d="M16 16l4.5 4.5"></path></svg>
|
||||
div(class="h-32 lg:h-28")
|
||||
// 风格滤镜列表(弹出/悬浮)
|
||||
div(class="grid grid-cols-3 sm:grid-cols-4 lg:grid-cols-3 gap-2 p-2 pt-0")
|
||||
template(v-for="item in 18" :key="item")
|
||||
template(v-for="item in models" :key="item.name")
|
||||
button.h-24(class="transition-[transform,opacity] origin-center filter-button relative aspect-[6/5] duration-200 border-2 rounded-lg overflow-hidden active:border-blue-300/50 border-transparent hover:border-high" aria-label="Select filter style: Colorpop" style="transition-delay: 10ms;")
|
||||
span( style="box-sizing: border-box; display: block; overflow: hidden; width: initial; height: initial; background: none; opacity: 1; border: 0px; margin: 0px; padding: 0px; position: absolute; inset: 0px;")
|
||||
img( alt="Colorpop" src="https://storage.googleapis.com/pai-marketing/filters/elizaport_style.png" decoding="async" data-nimg="fill" style="position: absolute; inset: 0px; box-sizing: border-box; padding: 0px; border: none; margin: auto; display: block; width: 0px; height: 0px; min-width: 100%; max-width: 100%; min-height: 100%; max-height: 100%; object-fit: cover;" sizes="100vw" srcset="https://storage.googleapis.com/pai-marketing/filters/elizaport_style.png 640w, https://storage.googleapis.com/pai-marketing/filters/elizaport_style.png 750w, https://storage.googleapis.com/pai-marketing/filters/elizaport_style.png 828w, https://storage.googleapis.com/pai-marketing/filters/elizaport_style.png 1080w, https://storage.googleapis.com/pai-marketing/filters/elizaport_style.png 1200w, https://storage.googleapis.com/pai-marketing/filters/elizaport_style.png 1920w, https://storage.googleapis.com/pai-marketing/filters/elizaport_style.png 2048w, https://storage.googleapis.com/pai-marketing/filters/elizaport_style.png 3840w")
|
||||
div( class="absolute inset-0 bg-gradient-to-t from-black/90 via-black/40 flex flex-col justify-end text-gray-100 text-left text-sm p-1") Colorpop
|
||||
img( alt="Colorpop" :src="item.image" decoding="async" data-nimg="fill" style="position: absolute; inset: 0px; box-sizing: border-box; padding: 0px; border: none; margin: auto; display: block; width: 0px; height: 0px; min-width: 100%; max-width: 100%; min-height: 100%; max-height: 100%; object-fit: cover;" sizes="100vw" srcset="https://storage.googleapis.com/pai-marketing/filters/elizaport_style.png 640w, https://storage.googleapis.com/pai-marketing/filters/elizaport_style.png 750w, https://storage.googleapis.com/pai-marketing/filters/elizaport_style.png 828w, https://storage.googleapis.com/pai-marketing/filters/elizaport_style.png 1080w, https://storage.googleapis.com/pai-marketing/filters/elizaport_style.png 1200w, https://storage.googleapis.com/pai-marketing/filters/elizaport_style.png 1920w, https://storage.googleapis.com/pai-marketing/filters/elizaport_style.png 2048w, https://storage.googleapis.com/pai-marketing/filters/elizaport_style.png 3840w")
|
||||
div( class="absolute inset-0 bg-gradient-to-t from-black/90 via-black/40 flex flex-col justify-end text-gray-100 text-left text-sm p-1") {{ item.name }}
|
||||
div
|
||||
p.font-bold 通过图像生成图像
|
||||
p.text-gray-400 上传或绘制图像以用作灵感
|
||||
@@ -79,28 +92,14 @@ div(class="mt-[60px] grid grid-cols-1 lg:grid-cols-4 xl:grid-cols-5 text-white b
|
||||
</div>
|
||||
</fieldset>
|
||||
div(class="flex flex-col gap-y-8 py-8")
|
||||
// 选择生成尺寸
|
||||
fieldset(class="create-fieldset")
|
||||
label 图像尺寸
|
||||
p 完成图像的宽度×高度.
|
||||
div(class="flex flex-row flex-wrap gap-x-2 gap-y-2")
|
||||
div(class="flex flex-row flex-wrap")
|
||||
input.hidden(type="radio" class="radio-input" id="image-dim-1" checked="")
|
||||
label.border.border-2.border-gray-500.rounded-md.px-4.py-1(for="image-dim-1" class="!text-[11px]" style="width:98px") 512 × 512
|
||||
div(class="flex flex-row flex-wrap")
|
||||
input.hidden(type="radio" class="radio-input" id="image-dim-2")
|
||||
label.border.border-2.border-gray-500.rounded-md.px-4.py-1(for="image-dim-2" class="!text-[11px]" style="width:98px") 1024 × 1024
|
||||
div(class="flex flex-row flex-wrap")
|
||||
input.hidden(type="radio" class="radio-input" id="image-dim-3")
|
||||
label.border.border-2.border-gray-500.rounded-md.px-4.py-1(for="image-dim-3" class="!text-[11px]" style="width:98px") 640 × 384
|
||||
div(class="flex flex-row flex-wrap")
|
||||
input.hidden(type="radio" class="radio-input" id="image-dim-4")
|
||||
label.border.border-2.border-gray-500.rounded-md.px-4.py-1(for="image-dim-4" class="!text-[11px]" style="width:98px") 384 × 640
|
||||
div(class="flex flex-row flex-wrap")
|
||||
input.hidden(type="radio" class="radio-input" id="image-dim-5")
|
||||
label.border.border-2.border-gray-500.rounded-md.px-4.py-1(for="image-dim-5" class="!text-[11px]" style="width:98px") 768 × 512
|
||||
div(class="flex flex-row flex-wrap")
|
||||
input.hidden(type="radio" class="radio-input" id="image-dim-6")
|
||||
label.border.border-2.border-gray-500.rounded-md.px-4.py-1(for="image-dim-6" class="!text-[11px]" style="width:98px") 512 × 768
|
||||
div(class="flex flex-row flex-wrap" v-for="item in sizes" :key="item.id")
|
||||
input.hidden.radio-input(type="radio" :id="item.id" checked="")
|
||||
label.border.border-2.border-gray-500.rounded-md.px-4.py-1.whitespace-nowrap.text-center(:for="item.id" class="!text-[11px]" style="width:98px") {{ item.width }} x {{ item.height }}
|
||||
div(class="text-sm grey-100 mt-1")
|
||||
p Buy a <a target="_blank" style="color:rgb(118 173 255)" href="/pricing">paid plan</a> for any width or height up to 1536px
|
||||
fieldset(class="create-fieldset")
|
||||
@@ -202,6 +201,9 @@ const views = ref({
|
||||
})
|
||||
|
||||
const imageCreate = ref({
|
||||
prompt: '渲染提示', // 渲染提示
|
||||
exclude: '排除', // 排除词汇
|
||||
exclude_on: false, // 排除开关
|
||||
// 输入:
|
||||
// 输入关键词
|
||||
// 排除关键词
|
||||
@@ -220,6 +222,35 @@ const imageCreate = ref({
|
||||
// 私有会话
|
||||
})
|
||||
|
||||
const sizes = ref([
|
||||
{ id:'image-dim-1', width:512, height:512 },
|
||||
{ id:'image-dim-2', width:768, height:768 },
|
||||
{ id:'image-dim-3', width:1024, height:1024 },
|
||||
{ id:'image-dim-4', width:640, height:384 },
|
||||
{ id:'image-dim-5', width:384, height:640 },
|
||||
{ id:'image-dim-6', width:768, height:512 },
|
||||
])
|
||||
|
||||
const models = ref([
|
||||
{ name:'None', use: 1, image:'https://storage.googleapis.com/pai-marketing/filters/elizaport_style.png' },
|
||||
{ name:'Colorpop1', use: 2, image:'https://storage.googleapis.com/pai-marketing/filters/elizaport_style.png' },
|
||||
{ name:'Colorpop2', use: 3, image:'https://storage.googleapis.com/pai-marketing/filters/elizaport_style.png' },
|
||||
{ name:'Colorpop3', use: 4, image:'https://storage.googleapis.com/pai-marketing/filters/elizaport_style.png' },
|
||||
{ name:'Colorpop3', use: 5, image:'https://storage.googleapis.com/pai-marketing/filters/elizaport_style.png' },
|
||||
{ name:'Colorpop3', use: 0, image:'https://storage.googleapis.com/pai-marketing/filters/elizaport_style.png' },
|
||||
{ name:'Colorpop3', use: 0, image:'https://storage.googleapis.com/pai-marketing/filters/elizaport_style.png' },
|
||||
{ name:'Colorpop3', use: 0, image:'https://storage.googleapis.com/pai-marketing/filters/elizaport_style.png' },
|
||||
])
|
||||
|
||||
const tasks = ref([
|
||||
// 以图生成图, 正面描述词, 反面描述词, 生成数量, 生成质量, 生成尺寸, 生成模型, 生成图片, 随机种子, 生成指导
|
||||
{ tid:'sjaksjka0', model:'Colorpop0', image:'', width:768, height:768, number:1, seed:1, quality:1, prompt:'prompt0' },
|
||||
{ tid:'sjaksjka1', model:'Colorpop1', image:'', width:768, height:768, number:1, seed:1, quality:1, prompt:'prompt1' },
|
||||
{ tid:'sjaksjka2', model:'Colorpop2', image:'', width:768, height:768, number:1, seed:1, quality:1, prompt:'prompt2' },
|
||||
{ tid:'sjaksjka3', model:'Colorpop3', image:'', width:768, height:768, number:1, seed:1, quality:1, prompt:'prompt3' },
|
||||
])
|
||||
|
||||
|
||||
</script>
|
||||
|
||||
<style>
|
||||
|
388
server.py
Normal file
388
server.py
Normal file
@@ -0,0 +1,388 @@
|
||||
import argparse, os
|
||||
import cv2
|
||||
import torch
|
||||
import numpy as np
|
||||
from omegaconf import OmegaConf
|
||||
from PIL import Image
|
||||
from tqdm import tqdm, trange
|
||||
from itertools import islice
|
||||
from einops import rearrange
|
||||
from torchvision.utils import make_grid
|
||||
from pytorch_lightning import seed_everything
|
||||
from torch import autocast
|
||||
from contextlib import nullcontext
|
||||
from imwatermark import WatermarkEncoder
|
||||
|
||||
from ldm.util import instantiate_from_config
|
||||
from ldm.models.diffusion.ddim import DDIMSampler
|
||||
from ldm.models.diffusion.plms import PLMSSampler
|
||||
from ldm.models.diffusion.dpm_solver import DPMSolverSampler
|
||||
|
||||
torch.set_grad_enabled(False)
|
||||
|
||||
def chunk(it, size):
|
||||
it = iter(it)
|
||||
return iter(lambda: tuple(islice(it, size)), ())
|
||||
|
||||
|
||||
def load_model_from_config(config, ckpt, device=torch.device("cuda"), verbose=False):
|
||||
print(f"Loading model from {ckpt}")
|
||||
pl_sd = torch.load(ckpt, map_location="cpu")
|
||||
if "global_step" in pl_sd:
|
||||
print(f"Global Step: {pl_sd['global_step']}")
|
||||
sd = pl_sd["state_dict"]
|
||||
model = instantiate_from_config(config.model)
|
||||
m, u = model.load_state_dict(sd, strict=False)
|
||||
if len(m) > 0 and verbose:
|
||||
print("missing keys:")
|
||||
print(m)
|
||||
if len(u) > 0 and verbose:
|
||||
print("unexpected keys:")
|
||||
print(u)
|
||||
|
||||
if device == torch.device("cuda"):
|
||||
model.cuda()
|
||||
elif device == torch.device("cpu"):
|
||||
model.cpu()
|
||||
model.cond_stage_model.device = "cpu"
|
||||
else:
|
||||
raise ValueError(f"Incorrect device name. Received: {device}")
|
||||
model.eval()
|
||||
return model
|
||||
|
||||
|
||||
def parse_args():
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument(
|
||||
"--prompt",
|
||||
type=str,
|
||||
nargs="?",
|
||||
default="a professional photograph of an astronaut riding a triceratops",
|
||||
help="the prompt to render"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--outdir",
|
||||
type=str,
|
||||
nargs="?",
|
||||
help="dir to write results to",
|
||||
default="outputs/txt2img-samples"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--steps",
|
||||
type=int,
|
||||
default=50,
|
||||
help="number of ddim sampling steps",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--plms",
|
||||
action='store_true',
|
||||
help="use plms sampling",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--dpm",
|
||||
action='store_true',
|
||||
help="use DPM (2) sampler",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--fixed_code",
|
||||
action='store_true',
|
||||
help="if enabled, uses the same starting code across all samples ",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--ddim_eta",
|
||||
type=float,
|
||||
default=0.0,
|
||||
help="ddim eta (eta=0.0 corresponds to deterministic sampling",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--n_iter",
|
||||
type=int,
|
||||
default=3,
|
||||
help="sample this often",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--H",
|
||||
type=int,
|
||||
default=512,
|
||||
help="image height, in pixel space",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--W",
|
||||
type=int,
|
||||
default=512,
|
||||
help="image width, in pixel space",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--C",
|
||||
type=int,
|
||||
default=4,
|
||||
help="latent channels",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--f",
|
||||
type=int,
|
||||
default=8,
|
||||
help="downsampling factor, most often 8 or 16",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--n_samples",
|
||||
type=int,
|
||||
default=3,
|
||||
help="how many samples to produce for each given prompt. A.k.a batch size",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--n_rows",
|
||||
type=int,
|
||||
default=0,
|
||||
help="rows in the grid (default: n_samples)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--scale",
|
||||
type=float,
|
||||
default=9.0,
|
||||
help="unconditional guidance scale: eps = eps(x, empty) + scale * (eps(x, cond) - eps(x, empty))",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--from-file",
|
||||
type=str,
|
||||
help="if specified, load prompts from this file, separated by newlines",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--config",
|
||||
type=str,
|
||||
default="configs/stable-diffusion/v2-inference.yaml",
|
||||
help="path to config which constructs model",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--ckpt",
|
||||
type=str,
|
||||
help="path to checkpoint of model",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--seed",
|
||||
type=int,
|
||||
default=42,
|
||||
help="the seed (for reproducible sampling)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--precision",
|
||||
type=str,
|
||||
help="evaluate at this precision",
|
||||
choices=["full", "autocast"],
|
||||
default="autocast"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--repeat",
|
||||
type=int,
|
||||
default=1,
|
||||
help="repeat each prompt in file this often",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--device",
|
||||
type=str,
|
||||
help="Device on which Stable Diffusion will be run",
|
||||
choices=["cpu", "cuda"],
|
||||
default="cpu"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--torchscript",
|
||||
action='store_true',
|
||||
help="Use TorchScript",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--ipex",
|
||||
action='store_true',
|
||||
help="Use Intel® Extension for PyTorch*",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--bf16",
|
||||
action='store_true',
|
||||
help="Use bfloat16",
|
||||
)
|
||||
opt = parser.parse_args()
|
||||
return opt
|
||||
|
||||
|
||||
def put_watermark(img, wm_encoder=None):
|
||||
if wm_encoder is not None:
|
||||
img = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
|
||||
img = wm_encoder.encode(img, 'dwtDct')
|
||||
img = Image.fromarray(img[:, :, ::-1])
|
||||
return img
|
||||
|
||||
|
||||
def main(opt):
|
||||
seed_everything(opt.seed)
|
||||
|
||||
config = OmegaConf.load(f"{opt.config}")
|
||||
device = torch.device("cuda") if opt.device == "cuda" else torch.device("cpu")
|
||||
model = load_model_from_config(config, f"{opt.ckpt}", device)
|
||||
|
||||
if opt.plms:
|
||||
sampler = PLMSSampler(model, device=device)
|
||||
elif opt.dpm:
|
||||
sampler = DPMSolverSampler(model, device=device)
|
||||
else:
|
||||
sampler = DDIMSampler(model, device=device)
|
||||
|
||||
os.makedirs(opt.outdir, exist_ok=True)
|
||||
outpath = opt.outdir
|
||||
|
||||
print("Creating invisible watermark encoder (see https://github.com/ShieldMnt/invisible-watermark)...")
|
||||
wm = "SDV2"
|
||||
wm_encoder = WatermarkEncoder()
|
||||
wm_encoder.set_watermark('bytes', wm.encode('utf-8'))
|
||||
|
||||
batch_size = opt.n_samples
|
||||
n_rows = opt.n_rows if opt.n_rows > 0 else batch_size
|
||||
if not opt.from_file:
|
||||
prompt = opt.prompt
|
||||
assert prompt is not None
|
||||
data = [batch_size * [prompt]]
|
||||
|
||||
else:
|
||||
print(f"reading prompts from {opt.from_file}")
|
||||
with open(opt.from_file, "r") as f:
|
||||
data = f.read().splitlines()
|
||||
data = [p for p in data for i in range(opt.repeat)]
|
||||
data = list(chunk(data, batch_size))
|
||||
|
||||
sample_path = os.path.join(outpath, "samples")
|
||||
os.makedirs(sample_path, exist_ok=True)
|
||||
sample_count = 0
|
||||
base_count = len(os.listdir(sample_path))
|
||||
grid_count = len(os.listdir(outpath)) - 1
|
||||
|
||||
start_code = None
|
||||
if opt.fixed_code:
|
||||
start_code = torch.randn([opt.n_samples, opt.C, opt.H // opt.f, opt.W // opt.f], device=device)
|
||||
|
||||
if opt.torchscript or opt.ipex:
|
||||
transformer = model.cond_stage_model.model
|
||||
unet = model.model.diffusion_model
|
||||
decoder = model.first_stage_model.decoder
|
||||
additional_context = torch.cpu.amp.autocast() if opt.bf16 else nullcontext()
|
||||
shape = [opt.C, opt.H // opt.f, opt.W // opt.f]
|
||||
|
||||
if opt.bf16 and not opt.torchscript and not opt.ipex:
|
||||
raise ValueError('Bfloat16 is supported only for torchscript+ipex')
|
||||
if opt.bf16 and unet.dtype != torch.bfloat16:
|
||||
raise ValueError("Use configs/stable-diffusion/intel/ configs with bf16 enabled if " +
|
||||
"you'd like to use bfloat16 with CPU.")
|
||||
if unet.dtype == torch.float16 and device == torch.device("cpu"):
|
||||
raise ValueError("Use configs/stable-diffusion/intel/ configs for your model if you'd like to run it on CPU.")
|
||||
|
||||
if opt.ipex:
|
||||
import intel_extension_for_pytorch as ipex
|
||||
bf16_dtype = torch.bfloat16 if opt.bf16 else None
|
||||
transformer = transformer.to(memory_format=torch.channels_last)
|
||||
transformer = ipex.optimize(transformer, level="O1", inplace=True)
|
||||
|
||||
unet = unet.to(memory_format=torch.channels_last)
|
||||
unet = ipex.optimize(unet, level="O1", auto_kernel_selection=True, inplace=True, dtype=bf16_dtype)
|
||||
|
||||
decoder = decoder.to(memory_format=torch.channels_last)
|
||||
decoder = ipex.optimize(decoder, level="O1", auto_kernel_selection=True, inplace=True, dtype=bf16_dtype)
|
||||
|
||||
if opt.torchscript:
|
||||
with torch.no_grad(), additional_context:
|
||||
# get UNET scripted
|
||||
if unet.use_checkpoint:
|
||||
raise ValueError("Gradient checkpoint won't work with tracing. " +
|
||||
"Use configs/stable-diffusion/intel/ configs for your model or disable checkpoint in your config.")
|
||||
|
||||
img_in = torch.ones(2, 4, 96, 96, dtype=torch.float32)
|
||||
t_in = torch.ones(2, dtype=torch.int64)
|
||||
context = torch.ones(2, 77, 1024, dtype=torch.float32)
|
||||
scripted_unet = torch.jit.trace(unet, (img_in, t_in, context))
|
||||
scripted_unet = torch.jit.optimize_for_inference(scripted_unet)
|
||||
print(type(scripted_unet))
|
||||
model.model.scripted_diffusion_model = scripted_unet
|
||||
|
||||
# get Decoder for first stage model scripted
|
||||
samples_ddim = torch.ones(1, 4, 96, 96, dtype=torch.float32)
|
||||
scripted_decoder = torch.jit.trace(decoder, (samples_ddim))
|
||||
scripted_decoder = torch.jit.optimize_for_inference(scripted_decoder)
|
||||
print(type(scripted_decoder))
|
||||
model.first_stage_model.decoder = scripted_decoder
|
||||
|
||||
prompts = data[0]
|
||||
print("Running a forward pass to initialize optimizations")
|
||||
uc = None
|
||||
if opt.scale != 1.0:
|
||||
uc = model.get_learned_conditioning(batch_size * [""])
|
||||
if isinstance(prompts, tuple):
|
||||
prompts = list(prompts)
|
||||
|
||||
with torch.no_grad(), additional_context:
|
||||
for _ in range(3):
|
||||
c = model.get_learned_conditioning(prompts)
|
||||
samples_ddim, _ = sampler.sample(S=5,
|
||||
conditioning=c,
|
||||
batch_size=batch_size,
|
||||
shape=shape,
|
||||
verbose=False,
|
||||
unconditional_guidance_scale=opt.scale,
|
||||
unconditional_conditioning=uc,
|
||||
eta=opt.ddim_eta,
|
||||
x_T=start_code)
|
||||
print("Running a forward pass for decoder")
|
||||
for _ in range(3):
|
||||
x_samples_ddim = model.decode_first_stage(samples_ddim)
|
||||
|
||||
precision_scope = autocast if opt.precision=="autocast" or opt.bf16 else nullcontext
|
||||
with torch.no_grad(), \
|
||||
precision_scope(opt.device), \
|
||||
model.ema_scope():
|
||||
all_samples = list()
|
||||
for n in trange(opt.n_iter, desc="Sampling"):
|
||||
for prompts in tqdm(data, desc="data"):
|
||||
uc = None
|
||||
if opt.scale != 1.0:
|
||||
uc = model.get_learned_conditioning(batch_size * [""])
|
||||
if isinstance(prompts, tuple):
|
||||
prompts = list(prompts)
|
||||
c = model.get_learned_conditioning(prompts)
|
||||
shape = [opt.C, opt.H // opt.f, opt.W // opt.f]
|
||||
samples, _ = sampler.sample(S=opt.steps,
|
||||
conditioning=c,
|
||||
batch_size=opt.n_samples,
|
||||
shape=shape,
|
||||
verbose=False,
|
||||
unconditional_guidance_scale=opt.scale,
|
||||
unconditional_conditioning=uc,
|
||||
eta=opt.ddim_eta,
|
||||
x_T=start_code)
|
||||
|
||||
x_samples = model.decode_first_stage(samples)
|
||||
x_samples = torch.clamp((x_samples + 1.0) / 2.0, min=0.0, max=1.0)
|
||||
|
||||
for x_sample in x_samples:
|
||||
x_sample = 255. * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c')
|
||||
img = Image.fromarray(x_sample.astype(np.uint8))
|
||||
img = put_watermark(img, wm_encoder)
|
||||
img.save(os.path.join(sample_path, f"{base_count:05}.png"))
|
||||
base_count += 1
|
||||
sample_count += 1
|
||||
|
||||
all_samples.append(x_samples)
|
||||
|
||||
# additionally, save as grid
|
||||
grid = torch.stack(all_samples, 0)
|
||||
grid = rearrange(grid, 'n b c h w -> (n b) c h w')
|
||||
grid = make_grid(grid, nrow=n_rows)
|
||||
|
||||
# to image
|
||||
grid = 255. * rearrange(grid, 'c h w -> h w c').cpu().numpy()
|
||||
grid = Image.fromarray(grid.astype(np.uint8))
|
||||
grid = put_watermark(grid, wm_encoder)
|
||||
grid.save(os.path.join(outpath, f'grid-{grid_count:04}.png'))
|
||||
grid_count += 1
|
||||
|
||||
print(f"Your samples are ready and waiting for you here: \n{outpath} \n"
|
||||
f" \nEnjoy.")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
opt = parse_args()
|
||||
main(opt)
|
29
server/api/drawing.ts
Normal file
29
server/api/drawing.ts
Normal file
@@ -0,0 +1,29 @@
|
||||
export default defineEventHandler(async event => {
|
||||
event.context.query = getQuery(event)
|
||||
|
||||
// 获取任务列表的状态进度(普通用户只能看到自己的)
|
||||
if (event.node.req.method === 'GET') {
|
||||
let tasks = await useStorage().getItem(`task:${event.context.query.tid}`)
|
||||
return { 'tasks': tasks }
|
||||
}
|
||||
|
||||
// 保存任务列表的状态进度(只允许BOT写入)
|
||||
if (event.node.req.method === 'PUT') {
|
||||
await useStorage().setItem(`task:${event.context.query.tid}`, event.context.query.tid)
|
||||
return { 'message': 'ok' }
|
||||
}
|
||||
|
||||
// 添加任务到队列(生成一个32位随机字符串作为任务ID)
|
||||
if (event.node.req.method === 'POST') {
|
||||
event.context.query.tid = Math.random().toString(36).substring(2, 34)
|
||||
await useStorage().setItem(`task:${event.context.query.tid}`, event.context.query)
|
||||
return { 'message': 'ok' }
|
||||
}
|
||||
|
||||
// 逐删除自己的指定任务(普通用户只能删除自己的)
|
||||
if (event.node.req.method === 'DELETE') {
|
||||
await useStorage().removeItem(`task:${event.context.query.tid}`)
|
||||
return { 'message': 'ok' }
|
||||
}
|
||||
|
||||
})
|
Reference in New Issue
Block a user