DEBUG
This commit is contained in:
85
server.py
85
server.py
@@ -1,4 +1,7 @@
|
|||||||
import argparse, os
|
import time
|
||||||
|
import requests
|
||||||
|
import argparse
|
||||||
|
import os
|
||||||
import cv2
|
import cv2
|
||||||
import torch
|
import torch
|
||||||
import numpy as np
|
import numpy as np
|
||||||
@@ -20,6 +23,7 @@ from ldm.models.diffusion.dpm_solver import DPMSolverSampler
|
|||||||
|
|
||||||
torch.set_grad_enabled(False)
|
torch.set_grad_enabled(False)
|
||||||
|
|
||||||
|
|
||||||
def chunk(it, size):
|
def chunk(it, size):
|
||||||
it = iter(it)
|
it = iter(it)
|
||||||
return iter(lambda: tuple(islice(it, size)), ())
|
return iter(lambda: tuple(islice(it, size)), ())
|
||||||
@@ -210,41 +214,44 @@ def put_watermark(img, wm_encoder=None):
|
|||||||
img = Image.fromarray(img[:, :, ::-1])
|
img = Image.fromarray(img[:, :, ::-1])
|
||||||
return img
|
return img
|
||||||
|
|
||||||
import time
|
|
||||||
import requests
|
|
||||||
|
|
||||||
# 对任务状态的修改
|
# 对任务状态的修改
|
||||||
def update_task_status(task:dict, status:str, progress:int):
|
def update_task_status(task: dict, status: str, progress: int):
|
||||||
task["status"] = status
|
task["status"] = status
|
||||||
task["progress"] = progress
|
task["progress"] = progress
|
||||||
requests.put(f"http://localhost:3000/api/drawing/{task['id']}", json=task)
|
requests.put(f"http://localhost:3000/api/drawing/{task['id']}", json=task)
|
||||||
|
|
||||||
|
|
||||||
def main_dev(opt):
|
def main_dev(opt):
|
||||||
model_name = '' # 默认模型
|
model_name = '' # 默认模型
|
||||||
model = None # 默认模型
|
model = None # 默认模型
|
||||||
config = None # 默认配置
|
config = None # 默认配置
|
||||||
device = None # 默认设备
|
device = None # 默认设备
|
||||||
while True:
|
while True:
|
||||||
time.sleep(2) # 延时1s执行, 避免cpu占用过高
|
time.sleep(2) # 延时1s执行, 避免cpu占用过高
|
||||||
data = requests.get("http://localhost:3000/api/drawing").json() # 从局域网中获取一组参数
|
data = requests.get("http://localhost:3000/api/drawing").json() # 从局域网中获取一组参数
|
||||||
print(data) # [{'model': '768-v-ema', 'prompt': '一只猫', 'watermark': '0'}, {'model': '768-v-ema', 'prompt': '一只狗', 'watermark': '0'}]
|
print(data)
|
||||||
# 遍历 data 返回dict
|
# 遍历 data 返回dict
|
||||||
for item in data:
|
for item in data:
|
||||||
print(item)
|
print(item)
|
||||||
update_task_status(item, "running", 0) # 更新任务状态为运行中
|
update_task_status(item, "running", 0) # 更新任务状态为运行中
|
||||||
|
|
||||||
# 设置参数
|
# 设置参数
|
||||||
if 'prompt' in item: opt.prompt = item['prompt'] # 描述
|
if 'prompt' in item:
|
||||||
if 'n_samples' in item: opt.n_samples = item['n_samples'] # 列数
|
opt.prompt = item['prompt'] # 描述
|
||||||
if 'n_rows' in item: opt.n_rows = item['n_rows'] # 行数
|
if 'n_samples' in item:
|
||||||
if 'scale' in item: opt.scale = item['scale'] # 比例
|
opt.n_samples = item['n_samples'] # 列数
|
||||||
|
if 'n_rows' in item:
|
||||||
|
opt.n_rows = item['n_rows'] # 行数
|
||||||
|
if 'scale' in item:
|
||||||
|
opt.scale = item['scale'] # 比例
|
||||||
|
|
||||||
# 如果模型不同,重新加载模型(注意释放内存)
|
# 如果模型不同,重新加载模型(注意释放内存)
|
||||||
if item['ckpt'] != model_name:
|
if item['ckpt'] != model_name:
|
||||||
# 获取环境配置
|
# 获取环境配置
|
||||||
model_name = item['ckpt']
|
model_name = item['ckpt']
|
||||||
opt.config = f'/data/{model_name}.yaml'
|
opt.config = f'/data/{model_name}.yaml'
|
||||||
opt.ckpt = f'/data/{model_name}.ckpt'
|
opt.ckpt = f'/data/{model_name}.ckpt'
|
||||||
opt.device = 'cuda'
|
opt.device = 'cuda'
|
||||||
print(f"config: {opt.config}", f"ckpt: {opt.ckpt}", f"device: {opt.device}")
|
print(f"config: {opt.config}", f"ckpt: {opt.ckpt}", f"device: {opt.device}")
|
||||||
config = OmegaConf.load(f"{opt.config}")
|
config = OmegaConf.load(f"{opt.config}")
|
||||||
@@ -300,8 +307,7 @@ def main_dev(opt):
|
|||||||
if opt.bf16 and not opt.torchscript and not opt.ipex:
|
if opt.bf16 and not opt.torchscript and not opt.ipex:
|
||||||
raise ValueError('Bfloat16 is supported only for torchscript+ipex')
|
raise ValueError('Bfloat16 is supported only for torchscript+ipex')
|
||||||
if opt.bf16 and unet.dtype != torch.bfloat16:
|
if opt.bf16 and unet.dtype != torch.bfloat16:
|
||||||
raise ValueError("Use configs/stable-diffusion/intel/ configs with bf16 enabled if " +
|
raise ValueError("Use configs/stable-diffusion/intel/ configs with bf16 enabled if you'd like to use bfloat16 with CPU.")
|
||||||
"you'd like to use bfloat16 with CPU.")
|
|
||||||
if unet.dtype == torch.float16 and device == torch.device("cpu"):
|
if unet.dtype == torch.float16 and device == torch.device("cpu"):
|
||||||
raise ValueError("Use configs/stable-diffusion/intel/ configs for your model if you'd like to run it on CPU.")
|
raise ValueError("Use configs/stable-diffusion/intel/ configs for your model if you'd like to run it on CPU.")
|
||||||
if opt.ipex:
|
if opt.ipex:
|
||||||
@@ -317,8 +323,7 @@ def main_dev(opt):
|
|||||||
with torch.no_grad(), additional_context:
|
with torch.no_grad(), additional_context:
|
||||||
# get UNET scripted
|
# get UNET scripted
|
||||||
if unet.use_checkpoint:
|
if unet.use_checkpoint:
|
||||||
raise ValueError("Gradient checkpoint won't work with tracing. " +
|
raise ValueError("Gradient checkpoint won't work with tracing. Use configs/stable-diffusion/intel/ configs for your model or disable checkpoint in your config.")
|
||||||
"Use configs/stable-diffusion/intel/ configs for your model or disable checkpoint in your config.")
|
|
||||||
img_in = torch.ones(2, 4, 96, 96, dtype=torch.float32)
|
img_in = torch.ones(2, 4, 96, 96, dtype=torch.float32)
|
||||||
t_in = torch.ones(2, dtype=torch.int64)
|
t_in = torch.ones(2, dtype=torch.int64)
|
||||||
context = torch.ones(2, 77, 1024, dtype=torch.float32)
|
context = torch.ones(2, 77, 1024, dtype=torch.float32)
|
||||||
@@ -354,9 +359,9 @@ def main_dev(opt):
|
|||||||
print("Running a forward pass for decoder")
|
print("Running a forward pass for decoder")
|
||||||
for _ in range(3):
|
for _ in range(3):
|
||||||
x_samples_ddim = model.decode_first_stage(samples_ddim)
|
x_samples_ddim = model.decode_first_stage(samples_ddim)
|
||||||
precision_scope = autocast if opt.precision=="autocast" or opt.bf16 else nullcontext
|
precision_scope = autocast if opt.precision == "autocast" or opt.bf16 else nullcontext
|
||||||
with torch.no_grad(), precision_scope(opt.device), model.ema_scope():
|
with torch.no_grad(), precision_scope(opt.device), model.ema_scope():
|
||||||
all_samples = list()
|
#all_samples = list()
|
||||||
# 执行指定的次数
|
# 执行指定的次数
|
||||||
for n in trange(item['number'], desc="Sampling"):
|
for n in trange(item['number'], desc="Sampling"):
|
||||||
print("Sampling:", n)
|
print("Sampling:", n)
|
||||||
@@ -369,26 +374,27 @@ def main_dev(opt):
|
|||||||
c = model.get_learned_conditioning(prompts)
|
c = model.get_learned_conditioning(prompts)
|
||||||
shape = [opt.C, opt.H // opt.f, opt.W // opt.f]
|
shape = [opt.C, opt.H // opt.f, opt.W // opt.f]
|
||||||
samples, _ = sampler.sample(S=opt.steps,
|
samples, _ = sampler.sample(S=opt.steps,
|
||||||
conditioning=c,
|
conditioning=c,
|
||||||
batch_size=opt.n_samples,
|
batch_size=opt.n_samples,
|
||||||
shape=shape,
|
shape=shape,
|
||||||
verbose=False,
|
verbose=False,
|
||||||
unconditional_guidance_scale=opt.scale,
|
unconditional_guidance_scale=opt.scale,
|
||||||
unconditional_conditioning=uc,
|
unconditional_conditioning=uc,
|
||||||
eta=opt.ddim_eta,
|
eta=opt.ddim_eta,
|
||||||
x_T=start_code)
|
x_T=start_code)
|
||||||
x_samples = model.decode_first_stage(samples)
|
x_samples = model.decode_first_stage(samples)
|
||||||
x_samples = torch.clamp((x_samples + 1.0) / 2.0, min=0.0, max=1.0)
|
x_samples = torch.clamp((x_samples + 1.0) / 2.0, min=0.0, max=1.0)
|
||||||
for x_sample in x_samples:
|
for x_sample in x_samples:
|
||||||
|
print("Sample count:", sample_count)
|
||||||
x_sample = 255. * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c')
|
x_sample = 255. * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c')
|
||||||
img = Image.fromarray(x_sample.astype(np.uint8))
|
img = Image.fromarray(x_sample.astype(np.uint8))
|
||||||
img = put_watermark(img, wm_encoder)
|
img = put_watermark(img, wm_encoder)
|
||||||
img.save(os.path.join(sample_path, f"{base_count:05}.png"))
|
img.save(os.path.join(sample_path, f"{base_count:05}.png"))
|
||||||
base_count += 1
|
base_count += 1
|
||||||
sample_count += 1
|
sample_count += 1
|
||||||
all_samples.append(x_samples)
|
#all_samples.append(x_samples)
|
||||||
print("Sample count:", sample_count)
|
print("Sample count:", sample_count)
|
||||||
#for n in trange(opt.n_iter, desc="Sampling"):
|
# for n in trange(opt.n_iter, desc="Sampling"):
|
||||||
# for prompts in tqdm(data, desc="data"):
|
# for prompts in tqdm(data, desc="data"):
|
||||||
# uc = None
|
# uc = None
|
||||||
# if opt.scale != 1.0:
|
# if opt.scale != 1.0:
|
||||||
@@ -416,24 +422,23 @@ def main_dev(opt):
|
|||||||
# base_count += 1
|
# base_count += 1
|
||||||
# sample_count += 1
|
# sample_count += 1
|
||||||
# all_samples.append(x_samples)
|
# all_samples.append(x_samples)
|
||||||
## additionally, save as grid
|
# additionally, save as grid
|
||||||
#grid = torch.stack(all_samples, 0)
|
#grid = torch.stack(all_samples, 0)
|
||||||
#grid = rearrange(grid, 'n b c h w -> (n b) c h w')
|
#grid = rearrange(grid, 'n b c h w -> (n b) c h w')
|
||||||
#grid = make_grid(grid, nrow=n_rows)
|
#grid = make_grid(grid, nrow=n_rows)
|
||||||
## to image
|
# to image
|
||||||
#grid = 255. * rearrange(grid, 'c h w -> h w c').cpu().numpy()
|
#grid = 255. * rearrange(grid, 'c h w -> h w c').cpu().numpy()
|
||||||
#grid = Image.fromarray(grid.astype(np.uint8))
|
#grid = Image.fromarray(grid.astype(np.uint8))
|
||||||
#grid = put_watermark(grid, wm_encoder)
|
#grid = put_watermark(grid, wm_encoder)
|
||||||
#grid.save(os.path.join(outpath, f'grid-{grid_count:04}.png'))
|
#grid.save(os.path.join(outpath, f'grid-{grid_count:04}.png'))
|
||||||
#grid_count += 1
|
#grid_count += 1
|
||||||
print(f"Your samples are ready and waiting for you here: \n{outpath} \n", f" \nEnjoy.")
|
print(f"Your samples are ready and waiting for you here: \n{outpath} \n", f" \nEnjoy.")
|
||||||
# 修改任务状态为完成
|
update_task_status(task=item, status='done', progress=1) # 修改任务状态为完成
|
||||||
update_task_status(task=item, status='done', progress=1)
|
print("任务结束, 等待10s后退出..")
|
||||||
# 任务结束, 等待20s后退出
|
time.sleep(10)
|
||||||
print("任务结束, 等待20s后退出..")
|
|
||||||
time.sleep(20)
|
|
||||||
break
|
break
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
opt = parse_args()
|
opt = parse_args()
|
||||||
main_dev(opt)
|
main_dev(opt)
|
||||||
|
Reference in New Issue
Block a user