diff --git a/server.py b/server.py index 8b55b84..0355bd7 100644 --- a/server.py +++ b/server.py @@ -1,4 +1,7 @@ -import argparse, os +import time +import requests +import argparse +import os import cv2 import torch import numpy as np @@ -20,6 +23,7 @@ from ldm.models.diffusion.dpm_solver import DPMSolverSampler torch.set_grad_enabled(False) + def chunk(it, size): it = iter(it) return iter(lambda: tuple(islice(it, size)), ()) @@ -210,41 +214,44 @@ def put_watermark(img, wm_encoder=None): img = Image.fromarray(img[:, :, ::-1]) return img -import time -import requests # 对任务状态的修改 -def update_task_status(task:dict, status:str, progress:int): +def update_task_status(task: dict, status: str, progress: int): task["status"] = status task["progress"] = progress requests.put(f"http://localhost:3000/api/drawing/{task['id']}", json=task) + def main_dev(opt): - model_name = '' # 默认模型 - model = None # 默认模型 - config = None # 默认配置 - device = None # 默认设备 + model_name = '' # 默认模型 + model = None # 默认模型 + config = None # 默认配置 + device = None # 默认设备 while True: - time.sleep(2) # 延时1s执行, 避免cpu占用过高 - data = requests.get("http://localhost:3000/api/drawing").json() # 从局域网中获取一组参数 - print(data) # [{'model': '768-v-ema', 'prompt': '一只猫', 'watermark': '0'}, {'model': '768-v-ema', 'prompt': '一只狗', 'watermark': '0'}] + time.sleep(2) # 延时1s执行, 避免cpu占用过高 + data = requests.get("http://localhost:3000/api/drawing").json() # 从局域网中获取一组参数 + print(data) # 遍历 data 返回dict for item in data: print(item) - update_task_status(item, "running", 0) # 更新任务状态为运行中 + update_task_status(item, "running", 0) # 更新任务状态为运行中 # 设置参数 - if 'prompt' in item: opt.prompt = item['prompt'] # 描述 - if 'n_samples' in item: opt.n_samples = item['n_samples'] # 列数 - if 'n_rows' in item: opt.n_rows = item['n_rows'] # 行数 - if 'scale' in item: opt.scale = item['scale'] # 比例 + if 'prompt' in item: + opt.prompt = item['prompt'] # 描述 + if 'n_samples' in item: + opt.n_samples = item['n_samples'] # 列数 + if 'n_rows' in item: + opt.n_rows = item['n_rows'] # 行数 + if 'scale' in item: + opt.scale = item['scale'] # 比例 # 如果模型不同,重新加载模型(注意释放内存) if item['ckpt'] != model_name: # 获取环境配置 model_name = item['ckpt'] opt.config = f'/data/{model_name}.yaml' - opt.ckpt = f'/data/{model_name}.ckpt' + opt.ckpt = f'/data/{model_name}.ckpt' opt.device = 'cuda' print(f"config: {opt.config}", f"ckpt: {opt.ckpt}", f"device: {opt.device}") config = OmegaConf.load(f"{opt.config}") @@ -300,8 +307,7 @@ def main_dev(opt): if opt.bf16 and not opt.torchscript and not opt.ipex: raise ValueError('Bfloat16 is supported only for torchscript+ipex') if opt.bf16 and unet.dtype != torch.bfloat16: - raise ValueError("Use configs/stable-diffusion/intel/ configs with bf16 enabled if " + - "you'd like to use bfloat16 with CPU.") + raise ValueError("Use configs/stable-diffusion/intel/ configs with bf16 enabled if you'd like to use bfloat16 with CPU.") if unet.dtype == torch.float16 and device == torch.device("cpu"): raise ValueError("Use configs/stable-diffusion/intel/ configs for your model if you'd like to run it on CPU.") if opt.ipex: @@ -317,8 +323,7 @@ def main_dev(opt): with torch.no_grad(), additional_context: # get UNET scripted if unet.use_checkpoint: - raise ValueError("Gradient checkpoint won't work with tracing. " + - "Use configs/stable-diffusion/intel/ configs for your model or disable checkpoint in your config.") + raise ValueError("Gradient checkpoint won't work with tracing. Use configs/stable-diffusion/intel/ configs for your model or disable checkpoint in your config.") img_in = torch.ones(2, 4, 96, 96, dtype=torch.float32) t_in = torch.ones(2, dtype=torch.int64) context = torch.ones(2, 77, 1024, dtype=torch.float32) @@ -354,9 +359,9 @@ def main_dev(opt): print("Running a forward pass for decoder") for _ in range(3): x_samples_ddim = model.decode_first_stage(samples_ddim) - precision_scope = autocast if opt.precision=="autocast" or opt.bf16 else nullcontext + precision_scope = autocast if opt.precision == "autocast" or opt.bf16 else nullcontext with torch.no_grad(), precision_scope(opt.device), model.ema_scope(): - all_samples = list() + #all_samples = list() # 执行指定的次数 for n in trange(item['number'], desc="Sampling"): print("Sampling:", n) @@ -369,26 +374,27 @@ def main_dev(opt): c = model.get_learned_conditioning(prompts) shape = [opt.C, opt.H // opt.f, opt.W // opt.f] samples, _ = sampler.sample(S=opt.steps, - conditioning=c, - batch_size=opt.n_samples, - shape=shape, - verbose=False, - unconditional_guidance_scale=opt.scale, - unconditional_conditioning=uc, - eta=opt.ddim_eta, - x_T=start_code) + conditioning=c, + batch_size=opt.n_samples, + shape=shape, + verbose=False, + unconditional_guidance_scale=opt.scale, + unconditional_conditioning=uc, + eta=opt.ddim_eta, + x_T=start_code) x_samples = model.decode_first_stage(samples) x_samples = torch.clamp((x_samples + 1.0) / 2.0, min=0.0, max=1.0) for x_sample in x_samples: + print("Sample count:", sample_count) x_sample = 255. * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c') img = Image.fromarray(x_sample.astype(np.uint8)) img = put_watermark(img, wm_encoder) img.save(os.path.join(sample_path, f"{base_count:05}.png")) base_count += 1 sample_count += 1 - all_samples.append(x_samples) + #all_samples.append(x_samples) print("Sample count:", sample_count) - #for n in trange(opt.n_iter, desc="Sampling"): + # for n in trange(opt.n_iter, desc="Sampling"): # for prompts in tqdm(data, desc="data"): # uc = None # if opt.scale != 1.0: @@ -416,24 +422,23 @@ def main_dev(opt): # base_count += 1 # sample_count += 1 # all_samples.append(x_samples) - ## additionally, save as grid + # additionally, save as grid #grid = torch.stack(all_samples, 0) #grid = rearrange(grid, 'n b c h w -> (n b) c h w') #grid = make_grid(grid, nrow=n_rows) - ## to image + # to image #grid = 255. * rearrange(grid, 'c h w -> h w c').cpu().numpy() #grid = Image.fromarray(grid.astype(np.uint8)) #grid = put_watermark(grid, wm_encoder) #grid.save(os.path.join(outpath, f'grid-{grid_count:04}.png')) #grid_count += 1 print(f"Your samples are ready and waiting for you here: \n{outpath} \n", f" \nEnjoy.") - # 修改任务状态为完成 - update_task_status(task=item, status='done', progress=1) - # 任务结束, 等待20s后退出 - print("任务结束, 等待20s后退出..") - time.sleep(20) + update_task_status(task=item, status='done', progress=1) # 修改任务状态为完成 + print("任务结束, 等待10s后退出..") + time.sleep(10) break + if __name__ == "__main__": opt = parse_args() main_dev(opt)