diff --git a/pages/index.vue b/pages/index.vue index 933f884..8fd9da2 100644 --- a/pages/index.vue +++ b/pages/index.vue @@ -80,13 +80,13 @@ div(class="mt-[60px] grid grid-cols-1 lg:grid-cols-4 xl:grid-cols-5 text-white b ) img(:src="IconStack") // 卡片模式 - div.flex(:class="{'justify-center': !views.cardMode, 'flex-col':views.cardMode}") + div.flex.flex-wrap.gap-6(:class="{'justify-center': !views.cardMode, 'flex-col':views.cardMode}") template(v-for="task in tasks" :key="task.id") - div.relative.bg-green-600.rounded-md(v-if="task.data" style="max-width: min(512px, 100%);") - div.object-contain + div.relative.bg-green-600.rounded-md.overflow-hidden.w-512px.h-512px.min-w-512px.transition-all.duration-150.ease-linear + div.object-contain(v-if="task.data") img(loading="lazy" :src="img" alt="task" v-for="img in task.data" :key="img") div.absolute.left-2.right-2.bottom-2.h-8.bg-green-500.rounded-full.overflow-hidden.text-green-900.text-xs - div.h-full.flex.items-center.text-center.px-2.bg-green-400(:style="`width:${task.progress*100}%`") {{ task.status }} {{ task.progress*100 }}% + div.h-full.flex.items-center.text-center.px-2.bg-green-400.transition-all.duration-5000.ease-linear(:style="`width:${task.progress*100}%`") {{ task.status }} {{ task.progress*100 }}% div.absolute.inset-0.flex.flex-col.items-center.justify-center.transition-opacity.bg-gradient-to-t.to-transparent.opacity-0(class="hover:cursor-pointer hover:opacity-100 from-black/90") pre {{ task }} // 右侧参数 diff --git a/server.py b/server.py index 99efca4..c16e773 100644 --- a/server.py +++ b/server.py @@ -261,7 +261,7 @@ def main_dev(opt): print(f"加载到显存完成: {model_name}") # 更新任务状态为运行中 - update_task_status(task, "running", 0) + update_task_status(task, "running", 0.5) # 使用指定的模型和配置文件进行推理一组参数 if opt.plms: @@ -307,7 +307,7 @@ def main_dev(opt): start_code = torch.randn([task['number'], opt.C, opt.H // opt.f, opt.W // opt.f], device=device) # 更新进度 - update_task_status(task, "running", 0.1) + update_task_status(task, "running", 0.8) # 生成图片 precision_scope = autocast if opt.precision == "autocast" or opt.bf16 else nullcontext @@ -323,7 +323,7 @@ def main_dev(opt): prompts = list(prompts) c = model.get_learned_conditioning(prompts) shape = [opt.C, opt.H // opt.f, opt.W // opt.f] - update_task_status(task=task, status='diffusing', progress=0.5) # 修改任务状态 + update_task_status(task=task, status='diffusing', progress=0.9) # 修改任务状态 samples, _ = sampler.sample(S=opt.steps, conditioning=c, batch_size=task['number'],